MORPHÆ
Presented by iGEM Athens 2020*
*National and Kapodistrian University of Athens, National Technical University of Athens, Agricultural University of Athens
"Morpho menelaus" by HorsePunchKid is licensed under CC BY-NC-SA 2.0
"Papilio ulysses" by Johan J.Ingles-Le Nobel is licensed under CC BY-NC-ND 2.0
Reflection spectra of the agar-bacteria system.
Reflection spectra of the cellulose-bacteria system.
Reflection spectra of the acellular biomaterial.
efficiency
Utilisation of Flavobacteriia biofilm and simulation of its optical properties.
safety
Selection of cellulose as the main biomaterial component.
ethics
Transparency of the production process behind the end-product.
universality
Popularising the production methods and organising further optimisation of the end-product to meet society’s needs.
sustainability
Efficiency, safety, universality and ethics subsumed under the umbrella of sustainability.
School of Ursulines
Introducing students to the world of SynBio.
Café Scientifique Athens
Communicating SynBio and MORPHÆ to a broad audience.
Athens School of Fine Arts
Showcasing structural colouration to the Greek BioArt community.
Dr. Panagoula Kollia
Dr. Evangelos Topakas
Dr. Vasiliki Koumandou
Dr. Colin Ingham
Dr. Michalis Kavousanakis
Elena Pappa
Special thanks to iGEM Athens 2018 and iGEM Athens 2019
[1] Buldum, G., Bismarck, A., Mantalaris, A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli.
[2] Johansen, V. E., Catón, L., Hamidjaja, R., Oosterink, E., Wilts, B. D., Rasmussen, T. S., Sherlock, M. M., Ingham, C. J., Vignolini, S. Genetic manipulation of structural color in bacterial colonies
[3] Kientz, B., Luke, S., Vukusic, P., Péteri, R., Beaudry, C., Renault, T., Simon, D., Mignot, T., Rosenfeld, E. A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms
[4] Siddique, Ρ. Η., Diewald, S., Leuthold, J., Hölscher, H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies.
[5] Ismail, F. M., Dissanayake D. M. S. C. Mathematical Modeling Of Bacterial Cellulose Production By Acetobacter Xylinum Using Rotating Biological Fermentor.
[6] Hornung, M., Ludwig, M., Gerrard, A. M., Schmauder, H.P. Optimizing the Production of Bacterial Cellulose in Surface Culture: Evaluation of Substrate Mass Transfer Influences on the Bioreaction (Part 1)
[7] Hornung, M., Ludwig, M., Gerrard, A. M., Schmauder, H.P. Optimizing the Production of Bacterial Cellulose in Surface Culture: Evaluation of Substrate Mass Transfer Influences on the Bioreaction (Part 2)
[8] Buldum, G., Argyro Tsipa, A., Mantalaris, A. Linking Engineered Gene Circuit Kinetic Modeling to Cellulose Biosynthesis Prediction in Escherichia coli: Toward Bioprocessing of Microbial Cell Factories.
[9] Zeng, M., Laromaine, A., Roig, A. Bacterial cellulose films: influence of bacterial strain and drying route on film properties.
[10] Vasconcellos, V. M., Farinas, C.S. The Effect of the Drying Process on the Properties of Bacterial Cellulose Films from Gluconacetobacter hansenii
[11] Hornung, M., Ludwig, M., Gerrard, A. M., Schmauder, H.P. Optimizing the Production of Bacterial Cellulose in Surface Culture: Evaluation of Substrate Mass Transfer Influences on the Bioreaction (Part 3)
[12] Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., Bielecki, S. Factors affecting the yield and properties of bacterial cellulose
[13] Krasteva, P. V., Bernal-Bayard, J., Travier, L., Fernando Ariel Martin, F. A., Kaminski, P. A., Karimova, G., Rémi Fronzes, R., Ghigo, J.M. Insights into the structure and assembly of a bacterial cellulose secretion system
[14] Sun, J., Bhushan, B., & Tong, J. (2013). Structural coloration in nature. RSC Advances, 3(35), 14862. doi: 10.1039/c3ra41096j
[15] Braun, T., Khubbar, M., Saffarini, D., & McBride, M. (2005). Flavobacterium johnsoniae Gliding Motility Genes Identified by mariner Mutagenesis. Journal Of Bacteriology, 187(20), 6943-6952. doi: 10.1128/jb.187.20.6943-6952.2005
[16] Strand, T., Lale, R., Degnes, K., Lando, M., & Valla, S. (2014). A New and Improved Host-Independent Plasmid System for RK2-Based Conjugal Transfer. Plos ONE, 9(3), e90372. doi: 10.1371/journal.pone.0090372
[17] Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 219, 63–76.
[18] Buldum, G., Bismarck, A., & Mantalaris, A. (2017). Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess And Biosystems Engineering, 41(2), 265-279. doi: 10.1007/s00449-017-1864-1
[19] McBride, M., & Kempf, M. (1996). Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. Journal Of Bacteriology, 178(3), 583-590. doi: 10.1128/jb.178.3.583-590.1996
[20] Chen, S., Bagdasarian, M., Kaufman, M., & Walker, E. (2006). Characterization of Strong Promoters from an Environmental Flavobacterium hibernum Strain by Using a Green Fluorescent Protein-Based Reporter System