1. Beauchamp, R. O. et al. A Critical Review of the Toxicology of Glutaraldehyde. Critical Reviews in Toxicology 22, 143-174, doi:10.3109/10408449209145322 (1992).
2. Białecka-Florjańczyk, E. & Florjańczyk, Z. in Thermodynamics, Solubility and Environmental Issues (ed Trevor M. Letcher) 397-408 (Elsevier, 2007).
3. Derraik, J. G. B. The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin 44, 842-852, doi:https://doi.org/10.1016/S0025-326X(02)00220-5 (2002).
4. Dixit, S., Yadav, A., Dwivedi, P. D. & Das, M. Toxic hazards of leather industry and technologies to combat threat: a review. Journal of Cleaner Production 87, 39-49, doi:https://doi.org/10.1016/j.jclepro.2014.10.017 (2015).
5. Fein, M. L. & Filachione, E. M. (Google Patents, 1960).
6. Flory, P. J. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation1. Journal of the American Chemical Society 63, 3083-3090, doi:10.1021/ja01856a061 (1941).
7. Hagan, R. M. et al. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angew Chem Int Ed Engl 49, 8421-8425, doi:10.1002/anie.201004340 (2010).
8. Harlan, J. & Feairheller, S. in Protein Crosslinking 425-440 (Springer, 1977).
9. Heidemann, E. Fundamentals of leather manufacture. (Roether, 1993).
10. Keeble, A. H. et al. Evolving Accelerated Amidation by SpyTag/SpyCatcher to Analyze Membrane Dynamics. Angew Chem Int Ed Engl 56, 16521-16525, doi:10.1002/anie.201707623 (2017).
11. Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide-protein interaction. Proc Natl Acad Sci U S A, doi:10.1073/pnas.1909653116 (2019).
12. Kim, Y. J., Kim, J. N., Wee, Y. J., Park, D. H. & Ryu, H. W. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol
137-140, 529-537, doi:10.1007/s12010-007-9077-8 (2007).
13. Krystynowicz, A. et al. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29, 189-195, doi:10.1038/sj.jim.7000303 (2002).
14. Liu, M. et al. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology 102, 1155-1165, doi:10.1007/s00253-017-8680-z (2018).
15. Mato, Y. et al. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology 35, 318-324, doi:10.1021/es0010498 (2001).
16. Mattsson, K. et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports 7, 11452, doi:10.1038/s41598-017-10813-0 (2017).
17. Mohammadi, P. et al. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Sci Adv 5, eaaw2541, doi:10.1126/sciadv.aaw2541 (2019).
18. Oke, M. et al. The Scottish Structural Proteomics Facility: targets, methods and outputs. Journal of Structural and Functional Genomics 11, 167-180, doi:10.1007/s10969-010-9090-y (2010).
19. Parmar, P. A. et al. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 99, 56-71, doi:10.1016/j.biomaterials.2016.05.011 (2016).
20. Peng, Y. Y. et al. Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications. Microb Cell Fact 11, 146, doi:10.1186/1475-2859-11-146 (2012).
21. Peng, Y. Y., Stoichevska, V., Schacht, K., Werkmeister, J. A. & Ramshaw, J. A. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes. J Biomed Mater Res A 102, 2189-2196, doi:10.1002/jbm.a.34898 (2014).
22. Ryan, P. G., Moore, C. J., van Franeker, J. A. & Moloney, C. L. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1999-2012 (2009).
23. Sano, L. L., Krueger, A. M. & Landrum, P. F. Chronic toxicity of glutaraldehyde: differential sensitivity of three freshwater organisms. Aquatic Toxicology 71, 283-296, doi:https://doi.org/10.1016/j.aquatox.2004.12.001 (2005).
24. Vishwakarma, A. in Contemporary Environmental Issues and Challenges in Era of Climate Change 235-244 (Springer, 2020).
25. Williams, E. E. Why animals matter: the case for animal protection. (Prometheus Books, 2010).
26. Xu, M. & Lewis, R. V. Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87, 7120-7124, doi:10.1073/pnas.87.18.7120 (1990).
27. Xu, Y., Keene, D. R., Bujnicki, J. M., Hook, M. & Lukomski, S. Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J Biol Chem 277, 27312-27318, doi:10.1074/jbc.M201163200 (2002).
28. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109, E690-697, doi:10.1073/pnas.1115485109 (2012).