Modeling: Modeling circuits with ODEs and experimental data

Section 1: Composing circuit models from Hill Functions

by Alejandro Vignoni (alvig2@upv.es)

An iGEM Measurement Committee Webinar
Week 3a, June 30th, 2020
Today Webinar’s Topics

△ Section 1: Composing circuit models from Hill functions (15 min)
△ Section 2: Relating parameters and data (15 min)
△ Section 3: Example: Incoherent feed-forward loop (model & data) (15 min)
△ Q&A – (at the end of each 15 minutes block, total 15 min)
Remember our journey: but now going directly to reduced models

Schematic → Biochemical Reactions → Reduced Mathematical Model

From Y. Boada (2018)
Modeling a genetic circuit: What do you want to do?

- **SENSE**
 - Biosensor
 - Promoter

- **COMPUTE**
 - Logic (Inverter)
 - Memory
 - Level detection

- **ACT**
 - Reporter
 - Enzyme
 - SM Signal
 - Therapeutic

Example: Detect Arabinose

Inverter (TetR)

Fluorescence Protein (RFP)
Modeling a genetic circuit

Example Sense-Compute-Act
Modeling a genetic circuit

Example Sense-Compute-Act

SENSE

Extracellular Arabinose

Arabinose
AraC

J23100 B0030

pBAD B0030

E.coli
Modeling a genetic circuit
Example Sense-Compute-Act
Modeling a genetic circuit
Example Sense-Compute-Act

Extracellular Arabinose

Arabinose
AraC

pBAD B0030
araC

TetR

pTet B0030
rfp

E.coli
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

\[
[\text{OUTPUT}] = \frac{\alpha_{pBAD}}{d_{OUT}} \left(\beta_{opBAD} + \frac{(1 - \beta_{opBAD}) [\text{Arab}]^{n_a}}{(K_{d_{pBAD}})^{n_a} + [\text{Arab}]^{n_a}} \right)
\]
Modeling a genetic circuit

Example Sense-Compute-Act

SENSE

\[
[\text{OUTPUT}] = \frac{\alpha_{pBAD}}{d_{\text{OUT}}} \left(\beta_{opBAD} + \frac{(1 - \beta_{opBAD}) \text{[Arab]}^n_a}{(K_{d_{pBAD}})^n_a + \text{[Arab]}^n_a} \right)
\]

\[
\alpha_{pBAD} = \frac{k_{2\text{OUT}}}{d_{m_{\text{OUT}}}} k_{1_{pBAD}} C_N
\]

\[
K_{d_{pBAD}} = \frac{K_d K_{\text{dis}} C_N}{\text{[AraC]}^n_a}
\]

Modeling a genetic circuit

Example Sense-Compute-Act

SENSE

\[
[\text{OUTPUT}] = \frac{\alpha_{pBAD}}{d_{OUT}} \left(\beta_{opBAD} + \frac{\left(1 - \beta_{opBAD}\right) [\text{Arab}]^{n_a}}{\left(K_{d_{pBAD}}\right)^{n_a} + [\text{Arab}]^{n_a}} \right)
\]

\[
\alpha_{pBAD} = \frac{k_2\text{OUT}}{d_m\text{OUT}} \cdot \frac{k_1_{pBAD} C_N}{k_{1pBAD} C_N}
\]

\[
K_{d_{pBAD}} = \frac{K_d K_{dis} C_N}{[\text{AraC}]^{n_A}}
\]

Modeling a genetic circuit

Example Sense-Compute-Act

SENSE

\[
\alpha_{pBAD} = \frac{k_{2OUT}}{d_mOUT} \frac{K_{1pBAD} C_N}{k_{1pBAD} C_N}
\]

\[
K_{d_{pBAD}} = \frac{K_d K_{dis} C_N}{[AraC]^{n_A}}
\]

\[
\text{OUTPUT} = \alpha_{pBAD} \frac{d}{OUT} \left(\beta_{o_{pBAD}} + \frac{(1 - \beta_{o_{pBAD}})}{(K_{d_{pBAD}})^{n_a}} [\text{Arab}]^{n_a} \right)
\]

Modeling a genetic circuit Example Sense-Compute-Act

SENSE

\[
\frac{\alpha_{\text{pBAD}}}{d_{\text{tetR}}} = 7.1 \times 10^4 \text{ molecules}
\]

\[
\beta_{o_{\text{pBAD}}} = 0.02
\]

\[
K_{d_{\text{pBAD}}} = 400 \ \mu\text{M}
\]

\[
[T\text{etR}] = \frac{\alpha_{\text{pBAD}}}{d_{\text{tetR}}} \left(\beta_{o_{\text{pBAD}}} + \frac{1 - \beta_{o_{\text{pBAD}}}}{K_{d_{\text{pBAD}}}} \right)^n_{\text{Arab}} + [\text{Arab}]^n_{\text{Arab}}
\]
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

Let us try with different RBS

B0030 B0034 B0032

What effect does it have in the hill function?

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{\text{TetR}}} \left(\beta_{o_{pBAD}} + \frac{1 - \beta_{o_{pBAD}}}{K_{d_{pBAD}}} [\text{Arab}]^{n_a} + [\text{Arab}]^{n_a} \right)
\]

\[
\alpha_{pBAD} = k_{2_{\text{TetR}}} \frac{k_{1_{m\text{TetR}}}}{d_{m_{\text{TetR}}} C_N}
\]
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

Let us try with different RBS

\[[\text{TetR}] = \frac{\alpha_{p\text{BAD}}}{d_{\text{TetR}}} d^{TetR} \left(\beta_{o_{p\text{BAD}}} \left(\frac{1 - \beta_{o_{p\text{BAD}}}}{K_{d_{p\text{BAD}}}} \right)^{n_a} + [\text{Arab}]^{n_a} \right) \]

\[\alpha_{p\text{BAD}} = k_{2_{\text{TetR}}} \frac{k_{1_{mTetR}}}{d_{m_{\text{TetR}}} C_N} \]
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{opBAD} + \frac{(1 - \beta_{opBAD})[Arab]^{n_a}}{(K_d_{pBAD})^{n_a} + [Arab]^{n_a}} \right)
\]

\[
\alpha_{pBAD} = k_{2_TetR} \frac{k_{1mTetR}}{d_{mTetR}} C_N
\]

B0030: \(\alpha_{pBAD} \approx 7.1 \times 10^4 \) molecules

B0034: \(\alpha_{pBAD} \approx 2.5 \times 10^4 \) molecules

B0032: \(\alpha_{pBAD} \approx 3.3 \times 10^3 \) molecules
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \frac{(1 - \beta_{o_{pBAD}}) [Arab]^{n_a}}{(K_{d_{pBAD}})^{n_a} + [Arab]^{n_a}} \right)
\]

\[
\alpha_{pBAD} = k_{2_{TetR}} \frac{k_{1m_{TetR}} C_N}{d_{m_{TetR}}}
\]

Now let us try with different Plasmid Copy Number (High/Medium)
Modeling a genetic circuit

Example Sense-Compute-Act

SENSE

\[
\alpha_{pBAD} = k_{2_{TetR}} \frac{k_{1_{mTetR}}}{d_{mTetR}} C_N, \quad K_{d_{pBAD}} = \frac{K_d K_{dis} C_N}{[AraC]^{n_A}}
\]

Changing from a High Copy (300) to a Medium Copy (50) not only moves the curve down (\(\alpha\)), but also to the left (Kd).
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

<table>
<thead>
<tr>
<th></th>
<th>High Copy</th>
<th>Medium Copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{pBAD}</td>
<td>7.1 × 10^4 molecules</td>
<td>1.2 × 10^4 molecules</td>
</tr>
<tr>
<td>B0030</td>
<td>3300 molecules</td>
<td>560 molecules</td>
</tr>
<tr>
<td>K_{d_{pBAD}}</td>
<td>440 μM</td>
<td>14 μM</td>
</tr>
</tbody>
</table>

Changing from a High Copy (300) to a Medium Copy (50) not only moves the curve down (α), but also to the left (K_d).
Modeling a genetic circuit: Example Sense-Compute-Act

COMPUTE - ACT

\[
[RFP] = \frac{\alpha_{pTet}}{d_{RFP}} \left(\beta_{o_{pTet}} + \frac{(1 - \beta_{o_{pTet}})(K_{d_{pTet}})^{n_t}}{(K_{d_{pTet}})^{n_t} + [TetR]^{n_t}} \right)
\]

\[
\alpha_{pTet} = k_{2_{RFP}} \frac{k_{1m_{RFP}}}{d_{m_{RFP}}} C_N
\]

\[
K_{d_{pTet}} = K_d C_N
\]
Modeling a genetic circuit Example Sense-Compute-Act

COMPUTE - ACT

Let us try with different RBS and Plasmid Copy Numbers
Modeling a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \frac{(1 - \beta_{o_{pBAD}}) [Arab]^n_a}{(K_{d_{pBAD}})^n_a + [Arab]^n_a} \right)
\]

\[
[RFP] = \frac{\alpha_{pTet}}{d_{RFP}} \left(\beta_{o_{pTet}} + \frac{(1 - \beta_{o_{pTet}}) [TetR]^n_t}{(K_{d_{pTet}})^n_t + [TetR]^n_t} \right)
\]
Modeling a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE

![Graph showing TetR (molecules) versus [Arabinose] (uM)](image-url)
Modeling a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE
Modeling a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE
Modeling a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE
Modeling a genetic circuit

Example Sense-Compute-Act

SENSE - COMPUTE - ACT
Modeling a genetic circuit

Example Sense-Compute-Act

SENSE - COMPUTE - ACT
Modeling a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT

![Graph showing experimental results for SENSE, COMPUTE, and ACT models.](image)
Questions?
Ask writing in the chat or contact me by email (alvig2 [at] upv [dot] es)

Stay tuned, next Section 2:
Relating parameters and data
Modeling a genetic circuit Example Sense-Compute-Act

Basal Expression

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \frac{(1 - \beta_{o_{pBAD}}) [Arab]^{n_a}}{(K_{d_{pBAD}})^{n_a} + [Arab]^{n_a}} \right)
\]

\[
[TetR] = \beta_{o_{pBAD}} \frac{\alpha_{pBAD}}{d_{TetR}} + (1 - \beta_{o_{pBAD}}) \frac{\alpha_{pBAD}}{d_{TetR}} \frac{[Arab]^{n_a}}{(K_{d_{pBAD}})^{n_a} + [Arab]^{n_a}}
\]

\[
[TetR] = \beta^*_{o_{pBAD}} + \frac{\alpha^*_{pBAD}}{d_{TetR}} \frac{[Arab]^{n_a}}{(K_{d_{pBAD}})^{n_a} + [Arab]^{n_a}}
\]

\[
\beta^*_{o_{pBAD}} = \beta_{o_{pBAD}} \frac{\alpha_{pBAD}}{d_{TetR}} \quad \frac{\alpha^*_{pBAD}}{d_{TetR}} = \left(1 - \beta_{o_{pBAD}}\right) \frac{\alpha_{pBAD}}{d_{TetR}}
\]
Modeling: Modeling circuits with ODEs and experimental data

Section 2: Relating parameters and data

by Alejandro Vignoni (alvig2@upv.es)

An iGEM Measurement Committee Webinar
Week 3a, June 30th, 2020
Today Webinar’s Topics

- Section 1: Composing circuit models from Hill functions (15 min)
- Section 2: Relating parameters and data (15 min)
- Section 3: Example: Incoherent feed-forward loop (model & data) (15 min)
- Q&A – (at the end of each 15 minutes block, total 15 min)
Relating model parameters and data
Example Sense-Compute-Act

E.coli
But first we need to get experimental data:
Measurement -> Calibrated measurement

Plate Reader

Fluorescein

Texas Red

https://2020.igem.org/Measurement/Protocols#validation
Stay in tune for Measurement Committee Webinars about Calibration:

Week 5 - Tuesday July 14th - 7am EDT - Quantifying fluorescence and cell count with plate readers
Week 6 - Tuesday July 23rd - 7am EDT - Quantifying fluorescence and cell phenotypes with flow cytometry

(Robinson et al, 2020, DOI: 10.1101/2020.06.01.127084)
Why? Because it is exactly what we get from the model

\[\frac{d[R]}{dt} = \frac{p_{R} C_{N} k_{R}}{d_{R} + \mu} - (d_{R} + \mu) [R] \]

\[\frac{d[cI]}{dt} = \frac{p_{cI} C_{N} k_{cI}}{d_{cI} + \mu} \left(\alpha + (1 - \alpha) \frac{1}{k_{\text{max}}} \frac{[R][A]}{k_{cI}C_{N}} \right)^2 - (d_{cI} + \mu) [cI] \]

\[\frac{d[GFP]}{dt} = \frac{p_{GFP} C_{N} k_{GFP}}{d_{GFP} + \mu} \left(\alpha + (1 - \alpha) \frac{1}{k_{\text{max}}} \frac{[R][A]}{k_{cGFP}C_{N}} \right)^2 - (d_{GFP} + \mu) [G] \]

\[\frac{dN}{dt} = \mu N \left(1 - \frac{N}{N_{\text{max}}} \right) \]

MEFL/Particle unit is equivalent to number of molecules/cell from the mathematical model.
Measuring a genetic circuit

Example Sense-Compute-Act

SENSE - COMPUTE - ACT

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \left(\frac{1 - \beta_{o_{pBAD}}}{K_{d_{pBAD}}} \right)^n[Arab]^n_a \right)
\]

\[
[RFP] = \frac{\alpha_{pTet}}{d_{RFP}} \left(\beta_{o_{pTet}} + \left(\frac{1 - \beta_{o_{pTet}}}{K_{d_{pTet}}} \right)^n[TetR]^n_t \right)
\]
Measuring a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \frac{1 - \beta_{o_{pBAD}}}{K_{d_{pBAD}}} [\text{Arab}]^n_a \right) + [\text{Arab}]^n_a
\]

\[
[RFP] = \frac{\alpha_{pTet}}{d_{RFP}} \left(\beta_{o_{pTet}} + \frac{1 - \beta_{o_{pTet}}}{K_{d_{pTet}}} [\text{TetR}]^n_t \right) + [\text{TetR}]^n_t
\]

We can measure only RFP.
Measuring a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT

\[
[TetR] = \frac{a_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \frac{(1 - \beta_{o_{pBAD}}) [Arab]^n_a}{K_{d_{pBAD}}^n_a + [Arab]^n_a} \right)
\]

\[
[RFP] = \frac{a_{pTet}}{d_{RFP}} \left(\beta_{o_{pTet}} + \frac{(1 - \beta_{o_{pTet}}) [TetR]^n_t}{K_{d_{pTet}}^n_t + [TetR]^n_t} \right)
\]

We can only change the amount of Arabinose

We can measure only RFP

E.coli
Measuring a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT

We can only change the amount of Arabinose

We can measure only RFP

We need more!!

What can we do?

\[[\text{TetR}] = \frac{\alpha_{pBAD}}{d_{\text{TetR}}} \left(\beta_{opBAD} + \frac{(1 - \beta_{opBAD}) [\text{Arab}]^n}{(K_{d_{pBAD}})^n + [\text{Arab}]^n} \right) \]

\[[\text{RFP}] = \frac{\alpha_{pTet}}{d_{\text{RFP}}} \left(\beta_{opTet} + \frac{(1 - \beta_{opTet}) [\text{TetR}]^n}{(K_{d_{pTet}})^n + [\text{TetR}]^n} \right) \]
Measuring a genetic circuit Example Sense-Compute-Act

SENSE

We can make another construct, with GFP as OUTPUT.
Measuring a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT for measurement

[Diagram of a genetic circuit with labels for Arabinose, AraC, TetR, pBAD, B0030, rfp, GFP, and E.coli.]
Measuring a genetic circuit Example Sense-Compute-Act

SENSE - COMPUTE - ACT for measurement

We can use GFP as a proxy for TetR
(As they respond in the same way to the changes in Arabinose)
We make experiments with 8 different levels of Arabinose induction, measure GFP (TetR) in a flowcytometer and calibrate the measurement.
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{opBAD} \left(1 - \beta_{opBAD} \right) [Arab]^n_a \right) + \frac{\beta_{opBAD}}{(K_{d_{pBAD}})^n_a + [Arab]^n_a}
\]

Error = \(\frac{1}{m} \sum^n_m ([TetR]_{model, i} - [TetR]_{measured, i})^2 \)

For the m different concentrations of Arabinose.

Then we minimize the error...
Modeling a genetic circuit Example Sense-Compute-Act

SENSE

\[
[TetR] = \frac{\alpha_{pBAD}}{d_{TetR}} \left(\beta_{o_{pBAD}} + \frac{(1 - \beta_{o_{pBAD}})[Arab]^{n_a}}{(K_{d_{pBAD}})^{n_a} + [Arab]^{n_a}} \right)
\]

\[
\frac{\alpha_{pBAD}}{d_{TetR}} = 7.056 \times 10^4 \text{molecules}
\]

\[
K_{d_{pBAD}} = 444.5 \mu M \quad \beta_{o_{pBAD}} = 0.02 \quad n_a = 1
\]
Modeling a genetic circuit Example Sense-Compute-Act

COMPUTE - ACT

\[[\text{RFP}] = \frac{\alpha_{pTet}}{d_{\text{RFP}}} \left(\beta_{pTet} + \frac{(1 - \beta_{pTet}) [\text{TetR}]^{n_t}}{(K_{d_{pTet}})^{n_t} + [\text{TetR}]^{n_t}} \right) \]

- \(\alpha_{pTet} = 1039 \) molecules
- \(\beta_{opBAD} = 0.08 \)
- \(K_{d_{pTet}} = 2668 \) molecules
- \(n_t = 2 \)
Questions?
Ask writing in the chat or contact me by email (alvig2 [at] upv [dot] es)

Stay tuned, next Section 3:
Example: Incoherent feed-forward loop (model & data)
Modeling: Modeling circuits with ODEs and experimental data

Section 3 Example: Incoherent feed-forward loop (model & data)

by Alejandro Vignoni (alvig2@upv.es)

An iGEM Measurement Committee Webinar
Week 3a, June 30th, 2020
Today Webinar’s Topics

- Section 1: Composing circuit models from Hill functions (15 min)
- Section 2: Relating parameters and data (15 min)
- Section 3: Example: Incoherent feed-forward loop (model & data) (15 min)
- Q&A – (at the end of each 15 minutes block, total 15 min)
Incoherent type1 feedforward circuit (I1-FFL)

Change-fold detector

Responds to a change in its input and returns to the value it had prior to the stimulus.

In biology, this behavior is called adaptation.
Input AHL_{ext} diffuses across the cell membrane. AHL together with LuxR protein activates the output protein GFP.
Structure of the I1-FFL gene circuit

Direct path
Input AHL_{ext} diffuses across the cell membrane. AHL together with LuxR protein activates the output protein GFP.

Indirect path
AHL together with LuxR proteins also activate cl protein. After some time, cl represses the output protein GFP.
Model of the I1-FFL gene circuit

\[
\frac{d[R]}{dt} = \frac{p_R C_N k_R}{d m_R + \mu} - (d_R + \mu) [R]
\]

\[
\frac{d[cI]}{dt} = \frac{p_{cI} C_N k_{cI}}{d m_{cI} + \mu} \left(\alpha + (1 - \alpha) \frac{1}{k_{dlux}} \left(\frac{[R][A]}{k_{d2} C_N} \right)^2 \right) - (d_{cI} + \mu) [cI]
\]

\[
\frac{d[GFP]}{dt} = \frac{p_G C_N k_G}{d m_G + \mu} \left(\alpha + (1 - \alpha) \frac{1}{k_{dlux}} \left(\frac{[R][A]}{k_{d2} C_N} \right)^2 \right) - (d_G + \mu) [G]
\]

\[
\frac{dN}{dt} = \mu N \left(1 - \frac{N}{N_{\text{max}}} \right)
\]

Model of the I1-FFL gene circuit

Simulation of a construct

Different induction levels

But only one peak!

The system responds, but is insensitive to the different levels of AHL.
Model of the I1-FFL gene circuit

Simulation of another construct

Increasing the C_N of the Hybrid promoter (to increase the Kd)

Different induction levels

Different peaks maxima!

Now the system responds and changes the peak maximum with different levels of AHL.
In vivo implementation of one version of I1-FFL circuit

E. coli bacteria

GFP protein after AHL_{ext} induction.

I1-FFL circuit with its biochemical reactions.

DNA sequences of the three gene circuits cl, luxR and gfp.

Source: Image x20, SB2CL Lab UPV 2019.
Model parameter estimation of the I1-FFL circuit

AHL$_{ext}$ input

Growth rate (μ)

Calibrated Fluorescence MEFL/Particle

GFP molecules/cell

GFP output
Cost function of the I1-FFL circuit

\[
J_{[i=1,\ldots,5]}(\theta) = \frac{1}{n} \sum_{q=1}^{n} \frac{1}{m} \sum_{k=1}^{m} \left(\frac{x_{10_iq}(k) - x_{10_iq}(kT)}{2} \right)^2
\]

\[
\min_{\theta \in \mathbb{R}^{17}} J(\theta) = [J_1(\theta), \ldots, J_5(\theta)] \in \mathbb{R}^5
\]

subject to:
I1-FFL model (5.1)

5 experimental scenarios
Mean squared error (MSE)

17 decision variables \(\theta \in \mathbb{R}^{17} \)

<table>
<thead>
<tr>
<th>Unknown Parameter</th>
<th>Description</th>
<th>Range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{GFP})</td>
<td>cl. GFP degradation rate</td>
<td>0.01-0.3 (\text{min}^{-1})</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>pLux Promoter Hill constant</td>
<td>50-100 (\text{nM})</td>
</tr>
<tr>
<td>(\gamma_3)</td>
<td>Hybrid pLuxR/cl promoter coefficient</td>
<td>0.0001-0.5</td>
</tr>
<tr>
<td>(\gamma_4)</td>
<td>Hybrid pLuxR/cl promoter coefficient</td>
<td>0.0005-5</td>
</tr>
<tr>
<td>(\gamma_5)</td>
<td>Hybrid pLuxR/cl promoter coefficient</td>
<td>1-100</td>
</tr>
<tr>
<td>(k_{p_{cl}}, k_{p_{gfp}})</td>
<td>cl. GFP translation rate</td>
<td>1 [0.60, 1 [100]] (\text{min}^{-1})</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>Hybrid promoter basal expression</td>
<td>0.01</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>Hybrid promoter leakiness</td>
<td>0.01</td>
</tr>
<tr>
<td>(k_{m_{cl}}, k_{m_{gfp}})</td>
<td>cl. GFP transcription rate</td>
<td>1 [0.75, 0 [0.25]] (\text{min}^{-1})</td>
</tr>
<tr>
<td>(k_{2, k_3})</td>
<td>Monomer and dimer dissociation rate</td>
<td>0.05-0.3 [0.1] (\text{min}^{-1})</td>
</tr>
<tr>
<td>(k_{2}, k_{3})</td>
<td>Monomer and dimer association rate</td>
<td>0.0006-0.06 (\text{min}^{-1})</td>
</tr>
<tr>
<td>(k_{mat})</td>
<td>GFP maturation time</td>
<td>20-120 (\text{min})</td>
</tr>
</tbody>
</table>

Parameter estimation based on MOOD
spMODE algorithm (http://matlabcentral/fileexchange/39215)
Comparison between model and data for the I1-FFL circuit
Parameter estimation

AHL Induction

Simulation

Experimental data
Questions?
Ask writing in the chat or contact me by email (alvig2 [at] upv [dot] es)

Scripts and files in the Git Repository