Difference between revisions of "Team:ZJU-China/Model"

Line 307: Line 307:
  
 
                     <p>
 
                     <p>
                         1) We used 2 models to describe the reactions in E. coli and magnetotactic bacteria separately.
+
                         1) We used 2 models to describe the reactions in <i>E.coli</i> and magnetotactic bacteria separately.
 
                     </p>
 
                     </p>
  
 
                     <p>
 
                     <p>
                         2) We used 1 deterministic model to determine the combination and disaggregation of SCFV-Fc and modified magnetosomes in vitro.
+
                         2) We used 1 deterministic model to determine the combination and disaggregation of scFv-Fc and modified magnetosomes in vitro.
 
                     </p>
 
                     </p>
  
Line 327: Line 327:
 
                 <div class="container1">
 
                 <div class="container1">
  
                     <h2 style="line-height:1.5;">PART Ⅰ Deterministic model to compute the production of ScFv and modified magnetosomes</h2>
+
                     <h2 style="line-height:1.5;">PART Ⅰ Deterministic model to compute the production of scFv and modified magnetosomes</h2>
 
                     <p>
 
                     <p>
                         To product ScFv and modified magnetosomes, we introduced the plasmid containing the target gene into E. coli and magnetotactic bacteria respectively, and finally understood the
+
                         To product scFv and modified magnetosomes, we introduced the plasmid containing the target gene into <i>E.coli</i> and magnetotactic bacteria respectively, and finally understood the
 
                         final yield of the target product by simulating their metabolic processes respectively.
 
                         final yield of the target product by simulating their metabolic processes respectively.
 
                     </p>
 
                     </p>
Line 335: Line 335:
  
  
                     <h3>E. coli</h3>
+
                     <h3><i>E.coli</i></h3>
  
 
                     <p>
 
                     <p>
                         In E. coli, T7 RNA polymerase is placed under a lac Operon, which can be induced by IPTG. The production of the target protein, ScFv-Fc, is controlled by T7 promoter (Fig.1a)
+
                         In <i>E.coli</i>, T7 RNA polymerase is placed under a lac Operon, which can be induced by IPTG. The production of the target protein, scFv-Fc, is controlled by T7 promoter (Fig.1a)
 
                         <a href="#our-team"><sup>[1]</sup></a>. The combination between T7 RNA polymerase and T7 promoter is determined by Hill function. The ordinary differential equations (ODEs)
 
                         <a href="#our-team"><sup>[1]</sup></a>. The combination between T7 RNA polymerase and T7 promoter is determined by Hill function. The ordinary differential equations (ODEs)
 
                         describing these processes are shown as follows, and parameter names and chemical equations can be found in the appendix.
 
                         describing these processes are shown as follows, and parameter names and chemical equations can be found in the appendix.
Line 367: Line 367:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         According our modeling result, although there’s a peak before adding IPTG, the production cannot be maintained during a long period of time. Only after adding IPTG, the
+
                         According our modeling result, although there's a peak before adding IPTG, the production cannot be maintained during a long period of time. Only after adding IPTG, the
 
                         concentration of the target protein in the bacteria is maintained at 1.3069×10<sup>4</sup> nM.
 
                         concentration of the target protein in the bacteria is maintained at 1.3069×10<sup>4</sup> nM.
 
                     </p>
 
                     </p>
Line 378: Line 378:
 
                     <br>
 
                     <br>
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                         <img src="https://static.igem.org/mediawiki/2020/1/1e/T--ZJU-China--wiki_model_fig1b_new.png"></img>
+
                         <img src="https://static.igem.org/mediawiki/2020/thumb/1/19/T--ZJU-China--Model_fig1b_arrow.jpg/800px-T--ZJU-China--Model_fig1b_arrow.jpg"></img>
 
                         <h6>b</h6>
 
                         <h6>b</h6>
  
Line 384: Line 384:
 
                     <br>
 
                     <br>
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                         <h6>Fig.1 Induced expression of ScFv-Fc
+
                         <h6>Fig.1 Induced expression of scFv-Fc
                             a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (ScFv-Fc) within
+
                             a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (scFv-Fc) within
 
                             the system.</h6>
 
                             the system.</h6>
  
Line 393: Line 393:
  
 
                     <p>
 
                     <p>
                         In magnetotactic bacteria, target protein (mamC-Zz) is placed under a lac Opera, and the repressor protein LacI is stably expressed in the cell, 2 molecules of LacI will form a
+
                         In magnetotactic bacteria, target protein (mamC-zz) is placed under a lac Opera, and the repressor protein LacI is stably expressed in the cell, 2 molecules of LacI will form a
 
                         dimer which binds to LacO DNA fragment and represses the expression of target protein (Fig. 2a). When IPTG is added and transported into the cell, IPTG molecules will bind with
 
                         dimer which binds to LacO DNA fragment and represses the expression of target protein (Fig. 2a). When IPTG is added and transported into the cell, IPTG molecules will bind with
 
                         LacI and inhibit its binding to LacO. In this way, target protein can be rescued from suppression <a href="#our-team"><sup>[1]</sup></a>.. We assume that all target proteins
 
                         LacI and inhibit its binding to LacO. In this way, target protein can be rescued from suppression <a href="#our-team"><sup>[1]</sup></a>.. We assume that all target proteins
Line 427: Line 427:
  
 
                     <p>
 
                     <p>
                         According to our modeling result, the final concentration of target protein mamC-Zz is 2.3625×10<sup>3</sup> nM. Since the concentration of magnetosomes extracted from the
+
                         According to our modeling result, the final concentration of target protein mamC-zz is 2.3625×10<sup>3</sup> nM. Since the concentration of magnetosomes extracted from the
 
                         culture medium whose OD600 reaches 1 is 172ug per milliliter <a href="#our-team"><sup>[2]</sup></a>, the average concentration of magnetosomes is 46.83 per cell, and there are
 
                         culture medium whose OD600 reaches 1 is 172ug per milliliter <a href="#our-team"><sup>[2]</sup></a>, the average concentration of magnetosomes is 46.83 per cell, and there are
                         an average of 24.31 target protein mamC-Zz on each magnetosome when assuming that all target proteins are localized to the magnetosome membrane.
+
                         an average of 24.31 target protein mamC-zz on each magnetosome when assuming that all target proteins are localized to the magnetosome membrane.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
Line 439: Line 439:
 
                     <br>
 
                     <br>
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                         <img src="https://static.igem.org/mediawiki/2020/5/5d/T--ZJU-China--wiki_model_fig2b_new.png"></img>
+
                         <img src="https://static.igem.org/mediawiki/2020/thumb/d/d4/T--ZJU-China--Model_fig2b_arrow.jpg/800px-T--ZJU-China--Model_fig2b_arrow.jpg"></img>
 
                         <h6>b</h6>
 
                         <h6>b</h6>
  
Line 446: Line 446:
 
                     <div class="imgbox">
 
                     <div class="imgbox">
 
                         <h6>
 
                         <h6>
                             Fig. 2 Induced expression of mamC-Zz a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates
+
                             Fig. 2 Induced expression of mamC-zz a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates
                             the amount of protein (mamC-Zz) within the system.
+
                             the amount of protein (mamC-zz) within the system.
 
                         </h6>
 
                         </h6>
  
Line 459: Line 459:
 
             <div class="section services" id="services">
 
             <div class="section services" id="services">
 
                 <div class="container1">
 
                 <div class="container1">
                     <h2 style="line-height:1.5;">PART Ⅱ Deterministic model to determine the combination and disaggregation of SCFV-Fc and modified magnetosomes in vitro</h2>
+
                     <h2 style="line-height:1.5;">PART Ⅱ Deterministic model to determine the combination and disaggregation of scFv-Fc and modified magnetosomes in vitro</h2>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         After ScFv-Fc and modified magnetosomes being produced in E. coli and magnetotactic bacteria, they are extracted from cells and purified. Fc domain can combine with Zz domain
+
                         After scFv-Fc and modified magnetosomes being produced in <i>E.coli</i> and magnetotactic bacteria, they are extracted from cells and purified. Fc domain can combine with zz domain
                         so that these two parts will combine and work together. Assuming that there’s no factor causing target protein degradation in vitro, the ordinary differential equations (ODEs)
+
                         so that these two parts will combine and work together. Assuming that there's no factor causing target protein degradation in vitro, the ordinary differential equations (ODEs)
 
                         describing these processes are shown as follows.
 
                         describing these processes are shown as follows.
 
                     </p>
 
                     </p>
Line 478: Line 478:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         From the modeling result, we can see the reaction between 10mg/ml modified magnetosomes and 100ug/ml ScFv-Fc is very fast and the production rate is relatively high (Fig. 3).
+
                         From the modeling result, we can see the reaction between 10mg/ml modified magnetosomes and 100ug/ml scFv-Fc is very fast and the production rate is relatively high (Fig. 3).
 
                     </p>
 
                     </p>
  
Line 484: Line 484:
 
                     <div class="imgbox">
 
                     <div class="imgbox">
 
                         <img src="https://static.igem.org/mediawiki/2020/e/ef/T--ZJU-China--wiki_model_fig3b_new.png"></img>
 
                         <img src="https://static.igem.org/mediawiki/2020/e/ef/T--ZJU-China--wiki_model_fig3b_new.png"></img>
                         <h6>Fig. 3 combination of ScFv-Fc and modified magnetosomes ( the blue line refers to the combination product of ScFv-Fc and modified magnetosomes, and the orange line refers
+
                         <h6>Fig. 3 combination of scFv-Fc and modified magnetosomes (the blue line refers to the combination product of scFv-Fc and modified magnetosomes, and the orange line refers
 
                             to pure magnetosomes)</h6>
 
                             to pure magnetosomes)</h6>
  
Line 506: Line 506:
 
                         It could be assumed that the magnetosome injected collect around the tumor if exists, since our magnetosome has been proved to stick to her-2 produced by breast cancer cells
 
                         It could be assumed that the magnetosome injected collect around the tumor if exists, since our magnetosome has been proved to stick to her-2 produced by breast cancer cells
 
                         specifically. As magnetosome enters into tissue fluid from blood, its concentration changes with time and the distance to the source. This way, we want to depict the alteration
 
                         specifically. As magnetosome enters into tissue fluid from blood, its concentration changes with time and the distance to the source. This way, we want to depict the alteration
                         of magnetosome’s concentration field to explain the process intuitively by image.
+
                         of magnetosome's concentration field to explain the process intuitively by image.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         First of all, we’d like to focus on the factors which drive magnetosome move or diffuse in tissue fluid. Four respects were considered, involving motions with the flow of
+
                         First of all, we'd like to focus on the factors which drive magnetosome move or diffuse in tissue fluid. Four respects were considered, involving motions with the flow of
 
                         tissue fluid, eddy diffusion caused by natural convection, mass transfer due to the difference of concentration, pure molecular diffusion as magnetosome was regarded as similar
 
                         tissue fluid, eddy diffusion caused by natural convection, mass transfer due to the difference of concentration, pure molecular diffusion as magnetosome was regarded as similar
 
                         to a molecular in size.
 
                         to a molecular in size.
Line 537: Line 537:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         According to Fick’s First Law, eddy diffusion caused by natural convection is calculated by \(J_{2}=D_{n} \times \frac{\partial c}{\partial r}\\\).
+
                         According to Fick's First Law, eddy diffusion caused by natural convection is calculated by \(J_{2}=D_{n} \times \frac{\partial c}{\partial r}\\\).
  
 
                     </p>
 
                     </p>
Line 551: Line 551:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         We used Chaoqun Yao(2020)’s experiment kc data of 1:1 silicone oil-water mixture, to whose viscosity blood and tissue fluid similar<a href="#our-team"><sup>[3]</sup></a>. A
+
                         We used Chaoqun Yao(2020)'s experiment kc data of 1:1 silicone oil-water mixture, to whose viscosity blood and tissue fluid similar<a href="#our-team"><sup>[3]</sup></a>. A
 
                         model was built for the relationship between the rate of flow and kc. Microsoft Office Excel was employed to finish the task.
 
                         model was built for the relationship between the rate of flow and kc. Microsoft Office Excel was employed to finish the task.
 
                     </p>
 
                     </p>
Line 618: Line 618:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         We should provide the relationship between r and c under the circumstance that t-0, when diffusion hadn’t happened in our model. At the very beginning, magnetosome collect in
+
                         We should provide the relationship between r and c under the circumstance that t-0, when diffusion hadn't happened in our model. At the very beginning, magnetosome collect in
 
                         the capillary and it is presumed that there was seldom magnetosome in tissue fluid.
 
                         the capillary and it is presumed that there was seldom magnetosome in tissue fluid.
 
                     </p>
 
                     </p>
Line 634: Line 634:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         In comparison to the initial condition, this time we’re required to explain how t influences c at the time of rmin=0 and rmax=10, embodying the probable size of the tumor. Soon
+
                         In comparison to the initial condition, this time we're required to explain how t influences c at the time of rmin=0 and rmax=10, embodying the probable size of the tumor. Soon
 
                         we found the condition invalid. At last we expand rmax=100 to produce the image.
 
                         we found the condition invalid. At last we expand rmax=100 to produce the image.
 
                     </p>
 
                     </p>
Line 666: Line 666:
 
                     <p>
 
                     <p>
 
                         To describe the combination and degradation with HER2, we have a model about modified magnetosomes in vivo. Assuming that there is no other way to clear magnetosomes and
 
                         To describe the combination and degradation with HER2, we have a model about modified magnetosomes in vivo. Assuming that there is no other way to clear magnetosomes and
                         ScFv-Fc in the tissue fluid except for phagocytosis by macrophages and the phagocytosis is at a constant rate, the ordinary differential equations (ODEs) describing these
+
                         scFv-Fc in the tissue fluid except for phagocytosis by macrophages and the phagocytosis is at a constant rate, the ordinary differential equations (ODEs) describing these
 
                         processes are as follows. Parameter names and chemical equations can be found in the appendix.
 
                         processes are as follows. Parameter names and chemical equations can be found in the appendix.
 
                     </p>
 
                     </p>
Line 676: Line 676:
 
                         $$\frac{d}{dt}H=-k_{2} \cdot H \cdot F+k_{-2} \cdot FH -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH$$
 
                         $$\frac{d}{dt}H=-k_{2} \cdot H \cdot F+k_{-2} \cdot FH -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH$$
 
                         $$\frac{d}{dt}FH=k_{2} \cdot H \cdot F-k_{-2} \cdot FH -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH$$
 
                         $$\frac{d}{dt}FH=k_{2} \cdot H \cdot F-k_{-2} \cdot FH -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH$$
                         $$\frac{d}{dt}ZFH=k_{1} \cdot FH \cdot Z-k_{-1} \cdot ZFH+k_{2} \cdot H \cdot FZ-k_{-2} \cdot ZFH-P$$
+
                         $$\frac{d}{dt}ZFH=k_{1} \cdot FH \cdot Z-k_{-1} \cdot ZFH+k_{2} \cdot H \cdot FZ-k_{-2} \cdot ZFH$$
  
  

Revision as of 11:53, 27 October 2020

Model

Model

Overview

To understand the production of target antibody and modified magnetosomes and the combination and disaggregation of them, we have established some in vivo and in vitro models.


Our modeling work is comprised of 3 parts.

1) We used 2 models to describe the reactions in E.coli and magnetotactic bacteria separately.

2) We used 1 deterministic model to determine the combination and disaggregation of scFv-Fc and modified magnetosomes in vitro.

3) We used 2 models to describe the movements and the combination with HER2 of modified magnetosomes in vivo.

PART Ⅰ Deterministic model to compute the production of scFv and modified magnetosomes

To product scFv and modified magnetosomes, we introduced the plasmid containing the target gene into E.coli and magnetotactic bacteria respectively, and finally understood the final yield of the target product by simulating their metabolic processes respectively.

E.coli

In E.coli, T7 RNA polymerase is placed under a lac Operon, which can be induced by IPTG. The production of the target protein, scFv-Fc, is controlled by T7 promoter (Fig.1a) [1]. The combination between T7 RNA polymerase and T7 promoter is determined by Hill function. The ordinary differential equations (ODEs) describing these processes are shown as follows, and parameter names and chemical equations can be found in the appendix.

\begin{align} \frac{d}{d t}MR_{E} &= \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{E}\\ \frac{d}{dt}R_{E}&=\beta_{R} \cdot MR_{E} -2 \cdot k_{2R} \cdot R_{E}^2 +2 \cdot k_{-2R} \cdot R_{2E} -\lambda_{R} \cdot R_{E}\\ \frac{d}{dt}R_{2E}&= 2 \cdot k_{2R} \cdot R_{E}^{2}-2 \cdot k_{-2R} \cdot R_{2E}-k_{r} \cdot R_{2 E} \cdot O_{E} +k_{-r} \cdot \left(O_{total}-O_{E}\right)-k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} \\& + k_{-dr1} \cdot I_{2}R_{2E}-\lambda_{R2} \cdot R_{2E}\\ \frac{d}{dt}O_{E}&=-k_{r} \cdot R_{2E} \cdot O_{E}+k_{-r} \cdot \left(O_{total}-O_{E}\right)+k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2}-k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2E}\\ \frac{d}{dt}I_{E}&= -2 \cdot k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2E}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} \\&+2 \cdot k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2 E}+k_{ft} \cdot YI_{exE}+k_{t} \cdot \left(I_{ex}-I_{E}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2E}\\ \frac{d}{dt}I_{2}R_{2E}&=k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} -k_{-dr1} \cdot I_{2}R_{2E} +k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} -k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2E} \\&-\lambda_{I2R2} \cdot I_{2}R_{2E}\\ \frac{d}{dt}MY_{E}&=\alpha_{0} \cdot \left(O_{total}-O_{E}\right) +\alpha_{1} \cdot O_{E} -\lambda_{MY} \cdot MY_{E}\\ \frac{d}{dt}Y_{E}&=\beta_{Y} \cdot MY_{E}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exE} -k_{p} \cdot Y_{E} \cdot I_{exE}-\lambda_{Y} \cdot Y_{E}\\ \frac{d}{dt}YI_{exE}&=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exE}+k_{p} \cdot Y_{E} \cdot I_{exE} -\lambda_{YIex} \cdot YI_{exE}\\ \frac{d}{dt}MT7_{E}&=\alpha_{0} \cdot \left(O_{total}-O_{E}\right)+\alpha_{1} \cdot O_{E} -\lambda_{MT7} \cdot MT7_{E}\\ \frac{d}{dt}pT7_{E}&=\beta_{T7} \cdot MT7_{E}-\lambda_{pT7} \cdot pT7_{E}\\ \frac{d}{dt}MF_{E}&=\left(\frac{pT7^{n}}{pT7^{n}+K_{d}^{n}} \cdot \alpha_{MT}+\alpha_{leak}\right) \cdot O_{total}-\lambda_{MF} \cdot MF_{E}\\ \frac{d}{dt}F_{E}&=\beta_{F} \cdot MF_{E}-\lambda_{F} \cdot F_{E} \end{align}


According our modeling result, although there's a peak before adding IPTG, the production cannot be maintained during a long period of time. Only after adding IPTG, the concentration of the target protein in the bacteria is maintained at 1.3069×104 nM.


a

b

Fig.1 Induced expression of scFv-Fc a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (scFv-Fc) within the system.

Magnetotactic bacteria

In magnetotactic bacteria, target protein (mamC-zz) is placed under a lac Opera, and the repressor protein LacI is stably expressed in the cell, 2 molecules of LacI will form a dimer which binds to LacO DNA fragment and represses the expression of target protein (Fig. 2a). When IPTG is added and transported into the cell, IPTG molecules will bind with LacI and inhibit its binding to LacO. In this way, target protein can be rescued from suppression [1].. We assume that all target proteins will be localized to the magnetosome membrane by intracellular transport. The ordinary differential equations (ODEs) describing these processes are shown as follows, parameter names and chemical equations can be found in the appendix.


\begin{align} \frac{d}{d t}MR_{M} &= \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{M}\\ \frac{d}{dt}R_{M}&=\beta_{R} \cdot MR_{M} -2 \cdot k_{2R} \cdot R_{M}^2 +2 \cdot k_{-2R} \cdot R_{2M} -\lambda_{R} \cdot R_{M}\\ \frac{d}{dt}R_{2M}&=2 \cdot k_{2R} \cdot R_{M}^{2}-2 \cdot k_{-2R} \cdot R_{2M}-k_{r} \cdot R_{2M} \cdot O_{M} +k_{-r} \cdot \left(O_{total}-O_{M}\right)-k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} \\&+k_{-dr1} \cdot I_{2}R_{2M}-\lambda_{R2} \cdot R_{2M}\\ \frac{d}{dt}O_{M}&=-k_{r} \cdot R_{2M} \cdot O_{M}+k_{-r} \cdot \left(O_{total}-O_{M}\right)+k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2}-k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}\\ \frac{d}{dt}I_{M}&=-2 \cdot k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2M}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} \\&+2 \cdot k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}+k_{ft} \cdot YI_{exM}+k_{t} \cdot \left(I_{ex}-I_{M}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2M}\\ \frac{d}{dt}I_{2}R_{2M}&=k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} -k_{-dr1} \cdot I_{2}R_{2M} +k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} -k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M} \\&-\lambda_{I2R2} \cdot I_{2}R_{2M}\\ \frac{d}{dt}MY_{M}&=\alpha_{0} \cdot \left(O_{total}-O_{M}\right) +\alpha_{1} \cdot O_{M} -\lambda_{MY} \cdot MY_{M}\\ \frac{d}{dt}Y_{M}&=\beta_{Y} \cdot MY_{M}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exM} -k_{p} \cdot Y_{M} \cdot I_{exM}-\lambda_{Y} \cdot Y_{M}\\ \frac{d}{dt}YI_{exM}&=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exM}+k_{p} \cdot Y_{M} \cdot I_{exM} -\lambda_{YIex} \cdot YI_{exM}\\ \frac{d}{dt}MZ_{M}&=\alpha_{0} \cdot \left(O_{total}-O_{M}\right)+\alpha_{1} \cdot O_{M} -\lambda_{MZ} \cdot MZ_{M}\\ \frac{d}{dt}Z_{M}&=\beta_{Z} \cdot MZ_{M}-\lambda_{Z} \cdot Z_{M} \end{align}


According to our modeling result, the final concentration of target protein mamC-zz is 2.3625×103 nM. Since the concentration of magnetosomes extracted from the culture medium whose OD600 reaches 1 is 172ug per milliliter [2], the average concentration of magnetosomes is 46.83 per cell, and there are an average of 24.31 target protein mamC-zz on each magnetosome when assuming that all target proteins are localized to the magnetosome membrane.


a

b

Fig. 2 Induced expression of mamC-zz a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (mamC-zz) within the system.

PART Ⅱ Deterministic model to determine the combination and disaggregation of scFv-Fc and modified magnetosomes in vitro



After scFv-Fc and modified magnetosomes being produced in E.coli and magnetotactic bacteria, they are extracted from cells and purified. Fc domain can combine with zz domain so that these two parts will combine and work together. Assuming that there's no factor causing target protein degradation in vitro, the ordinary differential equations (ODEs) describing these processes are shown as follows.


$$\frac{d}{dt}F=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$ $$\frac{d}{dt}Z=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$ $$\frac{d}{dt}FZ=k_{1} \cdot F \cdot Z-k_{-1} \cdot FZ$$


From the modeling result, we can see the reaction between 10mg/ml modified magnetosomes and 100ug/ml scFv-Fc is very fast and the production rate is relatively high (Fig. 3).


Fig. 3 combination of scFv-Fc and modified magnetosomes (the blue line refers to the combination product of scFv-Fc and modified magnetosomes, and the orange line refers to pure magnetosomes)

PART Ⅲ Kinetic model to simulate the diffusion and binding of modified magnetosomes inside the tumor



Magnetosome diffusion in internal environment



It could be assumed that the magnetosome injected collect around the tumor if exists, since our magnetosome has been proved to stick to her-2 produced by breast cancer cells specifically. As magnetosome enters into tissue fluid from blood, its concentration changes with time and the distance to the source. This way, we want to depict the alteration of magnetosome's concentration field to explain the process intuitively by image.


First of all, we'd like to focus on the factors which drive magnetosome move or diffuse in tissue fluid. Four respects were considered, involving motions with the flow of tissue fluid, eddy diffusion caused by natural convection, mass transfer due to the difference of concentration, pure molecular diffusion as magnetosome was regarded as similar to a molecular in size.


To simplify the question, polar coordinates were adopted to substitute a two-dimension or three-dimension gradient. That is to say, small particles were assumed to diffuse evenly to different directions and scalars were calculated instead of vectors.


$$\nabla \boldsymbol{c} \rightarrow \frac{\partial c}{\partial r}$$


Macroscopic methods could be useful to solve the problem. Use J to represent the diffusion flux. It is easy to infer motions with the flow of tissue fluid as \(J_{1}=ub \times \frac{\partial c}{\partial r}\\\).


$$u_{b}=\frac{\pi d^{2}\left(p+\frac{1}{2} \rho g d\right)}{32 \mu_{b} D}$$


According to Fick's First Law, eddy diffusion caused by natural convection is calculated by \(J_{2}=D_{n} \times \frac{\partial c}{\partial r}\\\).


On top of that, natural convection is very weak in both capillaries and tissue fluid flows. We chose to ignore the value of J2 finally, which means \(J_{2} \approx 0\\\).


In order to obtain the diffusion flux due to mass transfer, an important constant called mass transfer coefficient was in need, for the expression, \(J_{3}=k_{c} \times \frac{\partial c}{\partial r}\\\).


We used Chaoqun Yao(2020)'s experiment kc data of 1:1 silicone oil-water mixture, to whose viscosity blood and tissue fluid similar[3]. A model was built for the relationship between the rate of flow and kc. Microsoft Office Excel was employed to finish the task.


Fig. 4 the influence of rate of flow on mass transfer coefficient

Now we could get the value of Q in our situation. This way, the value of kc could be assumed roughly.


$$Q=u_{a} \times \frac{1}{4} \pi d^{2}=4.01 \times 10^{-4} ml/min$$ $$k_{c}=-0.0622 Q^{3}+0.0127 Q^{2}-0.0005 Q+2 \times 10^{-5}=2.00 \times 10^{-2} mm/s$$


Dispersion effect also led to the diffusion of magnetosome in tumor tissue. It could be estimated the same way as eddy diffusion caused by natural convection:


$$J_{4}=D_{m} \times \frac{\partial c}{\partial r}$$


Stokes-Einstein equation was able to be used to calculate the diffusion coefficient as below.


$$D_{m}=\frac{k_{b} T}{6 \pi \mu_{b} R}$$


Overall diffusion flux could be calculated by superimposing the following diffusion flux.


$$J=J_{1}-J_{2}-J_{3}-J_{4}$$


It is assumed that the motion of fluid flow obeys the law discovered by Navier and Stokes.


instantaneous term = - diffusion term + convection term + sourse

That is to say,


$$\frac{\partial c}{\partial t}=\frac{\partial J}{\partial r}+u_{a} \nabla \boldsymbol{c}_{\boldsymbol{o}}$$


To solve the following PDE with the help of MatlabR2020a, both initial condition and boundary condition were supposed to be provided.


We should provide the relationship between r and c under the circumstance that t-0, when diffusion hadn't happened in our model. At the very beginning, magnetosome collect in the capillary and it is presumed that there was seldom magnetosome in tissue fluid.


$$ \left.c(t, r)\right|_{t=0}=\left\{\begin{array}{ll} 0 & r \neq 0 \\ c_{o} & r=0 \end{array}\right. $$


In comparison to the initial condition, this time we're required to explain how t influences c at the time of rmin=0 and rmax=10, embodying the probable size of the tumor. Soon we found the condition invalid. At last we expand rmax=100 to produce the image.


One of the difficulties was that we failed to describe the alteration of the concentration taking place at the original location where diffusion started precisely and in detail. A highly rough calculation was attached to it to show the characteristics that the rate of diffusion weakened as the concentration descended and time went by.


$$\left.c(t, r)\right|_{r=0}=\frac{c_{o}}{1+0.05 \sqrt{t}}$$


Simultaneously, we assumed that when diffusion flux caught the brim space, co would be small enough to be ignored.


$$\left.c(t, r)\right|_{r=100}=0$$


Fig. 5 a) concentration field of magnetosome in tissue fluid b) Magnetosome diffused in the tumor issue capillaries around it.

Detection and combination with HER2

To describe the combination and degradation with HER2, we have a model about modified magnetosomes in vivo. Assuming that there is no other way to clear magnetosomes and scFv-Fc in the tissue fluid except for phagocytosis by macrophages and the phagocytosis is at a constant rate, the ordinary differential equations (ODEs) describing these processes are as follows. Parameter names and chemical equations can be found in the appendix.


$$\frac{d}{dt}F=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ -k_{2} \cdot H \cdot F +k_{-2} \cdot FH$$ $$\frac{d}{dt}Z=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH-P$$ $$\frac{d}{dt}FZ=k_{1} \cdot F \cdot Z-k_{-1} \cdot FZ -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH-P$$ $$\frac{d}{dt}H=-k_{2} \cdot H \cdot F+k_{-2} \cdot FH -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH$$ $$\frac{d}{dt}FH=k_{2} \cdot H \cdot F-k_{-2} \cdot FH -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH$$ $$\frac{d}{dt}ZFH=k_{1} \cdot FH \cdot Z-k_{-1} \cdot ZFH+k_{2} \cdot H \cdot FZ-k_{-2} \cdot ZFH$$


We can see in the result that the process of combination finished very quickly (Fig.6a), while the total number of the magnetosomes decreases gradually because of the phagocytosis process (Fig.6b), and the concentration of magnetosomes is one tenth of what it was before after around 120 minutes. We also have results with different concentration of magnetosomes injected (Fig.6c), which shows the combination in a short of time with different injection concentration of modified magnetosomes.


a

b
c
Fig. 6 a) Magnetosome binding in a short time b) Metabolism of magnetosomes in the body for a long time c) The combination of different concentrations of magnetosomes in a short time after injection


Appendix

Please consult the following file for a clearer understanding of the formulation of the model.


Reference

[1] Stamatakis, M., & Mantzaris, N. V. (2009). Comparison of deterministic and stochastic models of the lac operon genetic network. Biophysical journal, 96(3), 887–906. https://doi.org/10.1016/j.bpj.2008.10.028


[2] Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G., & Ying, L. (2007). Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Letters in applied microbiology, 45(1), 75–81. https://doi.org/10.1111/j.1472-765X.2007.02143.x


[3] Yao, C., Ma, H., Zhao, Q., Liu, Y., Zhao, Y., & Chen, G. (2020). Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass transfer regime and the effect of fluid viscosity. Chemical Engineering Science, 223, 115734. https://doi.org/10.1016/j.ces.2020.115734