Difference between revisions of "Team:Virginia/Results"

(Prototype team page)
 
Line 1: Line 1:
{{IGEM_TopBar}}
+
<html><head>
{{Virginia}}
+
    <meta charset="utf-8"/>
<html>
+
    <meta content="width=device-width" name="viewport"/>
 +
    <title>Manifold</title>
 +
    <link href="images/thickIconBlack.svg" rel="icon" type="image/svg"/>
  
<div class="column full_size">
+
    <!-- Font Declarations -->
<h1>Results</h1>
+
    <link href="Fonts/Montserrat-Black.ttf" rel="stylesheet"/>
<p>You can describe the results of your project and your future plans here. </p>
+
    <link href="Fonts/THICCCBOI.woff2" rel="stylesheet"/>
</div>
+
    <link href="Fonts/THICCCBOI-Bold.woff2" rel="stylesheet"/>
 +
    <link href="Fonts/THICCCBOI-Thin.woff2" rel="stylesheet"/>
 +
    <link href="THICCCBOI-SemiBold.woff2" rel="stylesheet"/>
  
 +
    <!-- Style Sheets -->
 +
    <link href="https://2020.igem.org/Template:Virginia/styles/igem-resetCSS?action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 +
    <link href="https://2020.igem.org/Template:Virginia/styles/headerCSS?action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 +
    <link href="https://2020.igem.org/Template:Virginia/styles/footerCSS?action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 +
    <link href="https://2020.igem.org/Template:Virginia/styles/mainCSS?action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 +
    <link href="https://2020.igem.org/Template:Virginia/styles/genpageCSS?action=raw&amp;ctype=text/css" rel="stylesheet" type="text/css"/>
 +
    <link href="https://2020.igem.org/Template:Virginia/styles/hoverCSS?action=raw&amp;ctype=text/css" media="all" rel="stylesheet"/>
  
<div class="column third_size" >
+
    <!-- Scripts -->
 +
    <!-- This must be the first script referenced in the head -->
 +
    <script src="https://2020.igem.org/Template:Virginia/scripts/mainJS?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
 +
    <script src="https://2020.igem.org/Template:Virginia/scripts/genpageJS?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
 +
    <!---------------------------------------------------------->
  
<h3>What should this page contain?</h3>
+
  </head>
<ul>
+
  <body>
<li> Clearly and objectively describe the results of your work.</li>
+
    <!--headerstart-->
<li> Future plans for the project. </li>
+
    <div class="topnavholder">
<li> Considerations for replicating the experiments. </li>
+
      <img class="menuimg hvr-grow-rotate" src="https://static.igem.org/mediawiki/2020/b/b9/T--Virginia--images--thickIcon.svg"/>
</ul>
+
      <div class="menuholder1">
</div>
+
      <div class="menulogo">MANIFOLD</div>
 +
        <div class="topnav">
 +
          <div class="dropdown">
 +
            <a class="active mainitem" href="#home">HOME</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="index.html#">Main</a>
 +
              <a class="hvr-sweep-to-right" href="index.html#abstract">Abstract</a>
 +
              <a class="hvr-sweep-to-right" href="index.html#problem">Problem</a>
 +
              <a class="hvr-sweep-to-right" href="index.html#solution">Solution</a>
 +
            </div>
 +
          </div>
 +
          <div class="dropdown">
 +
            <a class="mainitem" href="#project">PROJECT</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="#">Inspiration</a>
 +
              <a class="hvr-sweep-to-right" href="#">Description</a>
 +
              <a class="hvr-sweep-to-right" href="#">Design</a>
 +
              <a class="hvr-sweep-to-right" href="#">Experiments</a>
 +
              <a class="hvr-sweep-to-right" href="#">Results</a>
 +
              <a class="hvr-sweep-to-right" href="#">Modeling</a>
 +
              <a class="hvr-sweep-to-right" href="#">Device</a>
 +
              <a class="hvr-sweep-to-right" href="#">Notebook</a>
 +
              <a class="hvr-sweep-to-right" href="#">Safety</a>
 +
            </div>
 +
          </div>
 +
          <div class="dropdown">
 +
            <a class="mainitem" href="#parts">PARTS</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="#">New Parts</a>
 +
              <a class="hvr-sweep-to-right" href="#">Utilized Parts</a>
 +
            </div>
 +
          </div>
 +
          <div class="dropdown">
 +
            <a class="mainitem" href="#outreach">OUTREACH</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="#">Human Practices</a>
 +
              <a class="hvr-sweep-to-right" href="#">Public Engagement</a>
 +
              <a class="hvr-sweep-to-right" href="#">Collaborations</a>
 +
              <a class="hvr-sweep-to-right" href="#">Meet Ups</a>
 +
            </div>
 +
          </div>
 +
          <div class="dropdown">
 +
            <a class="mainitem" href="#team">TEAM</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Members">Members</a>
 +
              <a class="hvr-sweep-to-right" href="#">Attributions</a>
 +
              <a class="hvr-sweep-to-right" href="#">Gallery</a>
 +
            </div>
 +
          </div>
 +
          <div class="dropdown">
 +
            <a class="mainitem" href="#awards">AWARDS</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="#">Awards</a>
 +
              <a class="hvr-sweep-to-right" href="#">Medals</a>
 +
            </div>
 +
          </div>
 +
          <div class="dropdown">
 +
            <a class="mainitem" href="#about">RESOURCES</a>
 +
            <div class="dropdown-content">
 +
              <a class="hvr-sweep-to-right" href="#">Papers</a>
 +
              <a class="hvr-sweep-to-right" href="#">Nucleic Acids</a>
 +
              <a class="hvr-sweep-to-right" href="#">Protocols</a>
 +
              <a class="hvr-sweep-to-right" href="#">Software</a>
 +
            </div>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="progress-container">
 +
        <div class="progress-bar" id="myBar"></div>
 +
      </div>
 +
    </div>
 +
    <div class="headerspacer"></div>
 +
    <!--headerstop-->
  
 
+
    <!-- Start writing body here (don't delete mainContainer )-->
 
+
    <div class="mainContainer">
 
+
      <div class="TOCholder">
<div class="column two_thirds_size" >
+
        <div class="TOC">
<h3>Describe what your results mean </h3>
+
          <div class="TOCHeader">
<ul>
+
            Index:
<li> Interpretation of the results obtained during your project. Don't just show a plot/figure/graph/other, tell us what you think the data means. This is an important part of your project that the judges will look for. </li>
+
          </div>
<li> Show data, but remember <b>all measurement and characterization data must also be on the Part's Main Page on the <a href="http://parts.igem.org/Main_Page">Registry</a>.</b> Otherwise these data will not be in consideration for any medals or part awards! </li>
+
        </div>
<li> Consider including an analysis summary section to discuss what your results mean. Judges like to read what you think your data means, beyond all the data you have acquired during your project. </li>
+
      </div>
</ul>
+
      <div class="contentHolder">
</div>
+
          <div class="genTitle">
 
+
            <div>General Template Page</div>
 
+
          </div>
<div class="clear extra_space"></div>
+
          <div class="sectionTitle" id="Section 1">Section 1</div>
 
+
          <div class="bar"></div>
 
+
          <div class="section">
 
+
            <div class="paragraph">
<div class="column two_thirds_size" >
+
                The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of <div class="dict">bacterial microcompartments<span><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Carboxysome_and_bacterial_microcompartments.jpg/800px-Carboxysome_and_bacterial_microcompartments.jpg"/>Bacterial microcompartments (BMCs) are organelle-like structures, consisting of a protein shell that encloses enzymes and other proteins. BMCs are typically about 40–200 nanometers in diameter and are entirely made of proteins. The shell functions like a membrane, as it is selectively permeable.</span></div> (BMCs) with encapsulated dsDNA scaffolds <div class="ref">[1]<span>Elbaz, J., Yin, P., &amp; Voigt, C. A. (2016). Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature communications, 7(1), 1-11.</span></div> that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis. The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of bacterial microcompartments (BMCs) with encapsulated dsDNA scaffolds that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis.
<h3> Project Achievements </h3>
+
            </div>
 
+
          </div>
<p>You can also include a list of bullet points (and links) of the successes and failures you have had over your summer. It is a quick reference page for the judges to see what you achieved during your summer.</p>
+
          <div class="sectionTitle" id="Section 2">Section 2</div>
 
+
          <div class="bar"></div>
<ul>
+
          <div class="section">
<li>A list of linked bullet points of the successful results during your project</li>
+
            <div class="paragraph">
<li>A list of linked bullet points of the unsuccessful results during your project. This is about being scientifically honest. If you worked on an area for a long time with no success, tell us so we know where you put your effort.</li>
+
              The invention consists of a protein shell comprising one or more proteins, one or more nucleic acid scaffolds of which there can be multiple copies, anabolic and/or catabolic enzymes specific to the desired biosynthesis pathway each containing a nucleic acid binding domain, recognition sequences for the utilized nucleic acid binding domains, nucleic acid spacers, and a linkage between the nucleic acid scaffolds and the protein shell. The protein shell (10) can take the form of any closed or open surface that comprises one or more repeating protein units (12). Examples of valid shells include bacterial microcompartments such as the Pdu, Eut, and carboxysome microcompartments, as well as modified,  but not necessarily closed, surfaces composed of mutated versions of these microcompartment shell proteins. The nucleic acid scaffolds (18) comprise multiple recognition sequences (22) and spacers (32) and can be made from any form of nucleic acid, including: deoxyribonucleic acid, ribonucleic acid, and synthetic nucleic acids such as xeno nucleic acids and peptide nucleic acids among others. These scaffolds are attached to the protein shell. The pathway enzymes are biological proteins whose exact sequences are dependent on the given use case of the invention, but which all contain a nucleic acid binding domain either internal to their structure, or at their N or C terminus.
</ul>
+
            </div>
 
+
            <div class="figureHolder">
</div>
+
              <img src="https://static.igem.org/mediawiki/2019/3/31/T--NCKU_Tainan--CBMB-Amplification.png"/>
 
+
              <div>
 
+
              <b>Fig 1.</b> Figure taken from iGEM Tainan 2019 for demo purposes. Notice how the figure is much longer than it is wide, and two images are coupled together to achive this. Try to do that as well so it looks good.
 
+
              </div>
<div class="column third_size" >
+
            </div>
<div class="highlight decoration_A_full">
+
            <div class="paragraph">
<h3>Inspiration</h3>
+
              Additionally, protein linkers are usually present between this nucleic acid binding domain and the enzyme structure to prevent inhibition of enzyme activity. However the exact linker(s) used,  if any, is(are) also dependent on the specific use case of the invention. These pathway enzymes are attached to the nucleic acid scaffolds via their nucleic acid binding domains. The nucleic acid recognition sequences (22) are unique or semi-unique sequences of nucleic acid monomers on the nucleic acid scaffolds to which the utilized nucleic acid binding domains have some degree of molecular complementarity. These nucleic recognition sequences comprise most of the scaffold and mark the locations to which the DNA binding domains of the pathway enzymes attach to the scaffolds. The nucleic acid spacers (32) are relatively short sequences of nucleic acid monomers that are also present on the nucleic acid scaffolds, between the recognition sequences. The linkage between the nucleic acid scaffolds (18) and protein shell (10) provides a means by which the nucleic acid scaffolds are bound to the protein shell through direct or multi-molecule complementarity. This linkage is found between the nucleic acid scaffolds and the protein shell. One example is through the addition of a nucleic acid binding domain (24) to one or more of the shell proteins forming a nucleic acid binding domain, shell protein fusion (14). Like the pathway enzymes, this nucleic acid binding-domain can be either internal to the shell protein structure or at its N or C terminus, where the exact placement depends on the shell protein being utilized. Alternatively, one or more intermediate proteins can be used to adhere the nucleic acid scaffolds to the shell, where the region of the protein interacting with the shell binds the shell via protein-protein complementarity (28) with a given shell protein, and the region of the protein interacting with the nucleic acid scaffold binds another recognition sequence on the nucleic acid scaffold through another nucleic acid binding domain (30). This forms a shell protein binding, nucleic acid domain fusion (26).<br/><br/><br/>
<p>See how other teams presented their results.</p>
+
            </div>
<ul>
+
          </div>
<li><a href="https://2014.igem.org/Team:TU_Darmstadt/Results/Pathway">2014 TU Darmstadt </a></li>
+
      </div>
<li><a href="https://2014.igem.org/Team:Imperial/Results">2014 Imperial </a></li>
+
    </div>
<li><a href="https://2014.igem.org/Team:Paris_Bettencourt/Results">2014 Paris Bettencourt </a></li>
+
    <!-- Stop writing body here -->
</ul>
+
   
</div>
+
    <!--footerstart-->
</div>
+
    <div class="footerholder">
 
+
      <div class="bottomlogoholder">
 
+
        <div class="logoring" id="logoring" onclick="window.scrollTo({ top: 0, behavior: 'smooth' })">
 
+
          <img id="animationImg" src="https://static.igem.org/mediawiki/2020/d/d8/T--Virginia--logo-up-frames--21.svg"/>
 
+
        </div>
 
+
      </div>
</html>
+
      <div class="footer">
 +
        <div class="sponsorflex">
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/d4/T--Virginia--sponsors--UVA.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 +
          <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/dc/T--Virginia--sponsors--GenScript.png"/></div>
 +
        </div>
 +
        <div class="socialholder">
 +
          <div class="menulogo">MANIFOLD</div>
 +
          <div class="followus">FOLLOW US:</div>
 +
          <div class="sociallink"><div style="color:#7496D2;margin-right: 1em;">FACEBOOK:</div>@VIRGINIAiGEM2020</div>
 +
          <div class="sociallink"><div style="color:#FF99FF;margin-right: 1em;">INSTAGRAM: </div>@iGEM.AT.UVA</div>
 +
          <div class="sociallink"><div style="color:#A3E7FF;margin-right: 1em;">TWITTER: </div>@VIRGINIAiGEM2020</div>
 +
        </div>
 +
    </div>
 +
    </div>
 +
    <!-- pre-load all images used in the animation to fix lag on the first run -->
 +
    <div style="display: none;">
 +
      <img src="https://static.igem.org/mediawiki/2020/1/17/T--Virginia--logo-up-frames--2.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/9/95/T--Virginia--logo-up-frames--3.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/3/35/T--Virginia--logo-up-frames--4.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/b/bc/T--Virginia--logo-up-frames--5.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/9/9b/T--Virginia--logo-up-frames--6.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/6/65/T--Virginia--logo-up-frames--7.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/a/ab/T--Virginia--logo-up-frames--8.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/b/b4/T--Virginia--logo-up-frames--9.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/f/f4/T--Virginia--logo-up-frames--10.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/0/0e/T--Virginia--logo-up-frames--11.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/e/e0/T--Virginia--logo-up-frames--12.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/4/45/T--Virginia--logo-up-frames--13.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/f/fd/T--Virginia--logo-up-frames--14.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/2/2e/T--Virginia--logo-up-frames--15.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/8/8b/T--Virginia--logo-up-frames--16.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/7/7c/T--Virginia--logo-up-frames--17.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/2/27/T--Virginia--logo-up-frames--18.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/e/e2/T--Virginia--logo-up-frames--19.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/0/04/T--Virginia--logo-up-frames--20.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/d/d8/T--Virginia--logo-up-frames--21.svg"/>
 +
      <img src="https://static.igem.org/mediawiki/2020/e/e6/T--Virginia--logo-up-frames--22.svg"/>
 +
    </div>
 +
    <!--footerstop-->
 +
 
 +
</body></html>

Revision as of 21:57, 18 October 2020

Manifold

Index:
General Template Page
Section 1
The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of
bacterial microcompartmentsBacterial microcompartments (BMCs) are organelle-like structures, consisting of a protein shell that encloses enzymes and other proteins. BMCs are typically about 40–200 nanometers in diameter and are entirely made of proteins. The shell functions like a membrane, as it is selectively permeable.
(BMCs) with encapsulated dsDNA scaffolds
[1]Elbaz, J., Yin, P., & Voigt, C. A. (2016). Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature communications, 7(1), 1-11.
that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis. The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of bacterial microcompartments (BMCs) with encapsulated dsDNA scaffolds that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis.
Section 2
The invention consists of a protein shell comprising one or more proteins, one or more nucleic acid scaffolds of which there can be multiple copies, anabolic and/or catabolic enzymes specific to the desired biosynthesis pathway each containing a nucleic acid binding domain, recognition sequences for the utilized nucleic acid binding domains, nucleic acid spacers, and a linkage between the nucleic acid scaffolds and the protein shell. The protein shell (10) can take the form of any closed or open surface that comprises one or more repeating protein units (12). Examples of valid shells include bacterial microcompartments such as the Pdu, Eut, and carboxysome microcompartments, as well as modified, but not necessarily closed, surfaces composed of mutated versions of these microcompartment shell proteins. The nucleic acid scaffolds (18) comprise multiple recognition sequences (22) and spacers (32) and can be made from any form of nucleic acid, including: deoxyribonucleic acid, ribonucleic acid, and synthetic nucleic acids such as xeno nucleic acids and peptide nucleic acids among others. These scaffolds are attached to the protein shell. The pathway enzymes are biological proteins whose exact sequences are dependent on the given use case of the invention, but which all contain a nucleic acid binding domain either internal to their structure, or at their N or C terminus.
Fig 1. Figure taken from iGEM Tainan 2019 for demo purposes. Notice how the figure is much longer than it is wide, and two images are coupled together to achive this. Try to do that as well so it looks good.
Additionally, protein linkers are usually present between this nucleic acid binding domain and the enzyme structure to prevent inhibition of enzyme activity. However the exact linker(s) used, if any, is(are) also dependent on the specific use case of the invention. These pathway enzymes are attached to the nucleic acid scaffolds via their nucleic acid binding domains. The nucleic acid recognition sequences (22) are unique or semi-unique sequences of nucleic acid monomers on the nucleic acid scaffolds to which the utilized nucleic acid binding domains have some degree of molecular complementarity. These nucleic recognition sequences comprise most of the scaffold and mark the locations to which the DNA binding domains of the pathway enzymes attach to the scaffolds. The nucleic acid spacers (32) are relatively short sequences of nucleic acid monomers that are also present on the nucleic acid scaffolds, between the recognition sequences. The linkage between the nucleic acid scaffolds (18) and protein shell (10) provides a means by which the nucleic acid scaffolds are bound to the protein shell through direct or multi-molecule complementarity. This linkage is found between the nucleic acid scaffolds and the protein shell. One example is through the addition of a nucleic acid binding domain (24) to one or more of the shell proteins forming a nucleic acid binding domain, shell protein fusion (14). Like the pathway enzymes, this nucleic acid binding-domain can be either internal to the shell protein structure or at its N or C terminus, where the exact placement depends on the shell protein being utilized. Alternatively, one or more intermediate proteins can be used to adhere the nucleic acid scaffolds to the shell, where the region of the protein interacting with the shell binds the shell via protein-protein complementarity (28) with a given shell protein, and the region of the protein interacting with the nucleic acid scaffold binds another recognition sequence on the nucleic acid scaffold through another nucleic acid binding domain (30). This forms a shell protein binding, nucleic acid domain fusion (26).