[1] Aaseth, J., Wallace, D. R., Vejrup, K., & Alexander, J. (2020). Methylmercury and developmental neurotoxicity: A global concern. Current Opinion in Toxicology, 19(January), 80–87.
https://doi.org/10.1016/j.cotox.2020.01.005
[2] Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., al-Rawi, N. Y., Tikriti, S., Dahahir, H. I., Clarkson, T. W., Smith, J. C., & Doherty, R. A. (1973). Methylmercury poisoning in Iraq. Science (New York, N.Y.), 181(4096), 230–241.
https://doi.org/10.1126/science.181.4096.230
[3] Brown, N. L., Stoyanov, J. V., Kidd, S. P., & Hobman, J. L. (2003). The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 27(2–3), 145–163.
https://doi.org/10.1016/S0168-6445(03)00051-2
[4] Gentschev, I., Dietrich, G., & Goebel, W. (2002). The E. coli α-hemolysin secretion system and its use in vaccine development. Trends in Microbiology, 10(1), 39–45.
https://doi.org/10.1016/S0966-842X(01)02259-4
[5] Gilmour, C., & Riedel, G. (2009). Biogeochemistry of Trace Metals and Mettaloids. Encyclopedia of Inland Waters, 7–15.
https://doi.org/10.1016/B978-012370626-3.00095-8
[6] Harada M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical reviews in toxicology, 25(1), 1–24.
https://doi.org/10.3109/10408449509089885
[7] Hidalgo, E., Leautaud, V., & Demple, B. (1998). The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator. EMBO Journal, 17(9), 2629–2636.
https://doi.org/10.1093/emboj/17.9.2629
[8] Mathema, V. B., Thakuri, B. C., & Sillanpää, M. (2011). Bacterial mer operonmediated detoxification of mercurial compounds: A short review. Archives of Microbiology, 193(12), 837–844.
[9] National Research Council. (2000). Toxicological Effects of Methylmercury. In Toxicological Effects of Methylmercury. National Academies Press.
https://doi.org/10.17226/9899
[10] Nogara, P. A., Oliveira, C. S., Schmitz, G. L., Piquini, P. C., Farina, M., Aschner, M., & Rocha, J. B. T. (2019). Methylmercury’s chemistry: From the environment to the mammalian brain. Biochimica et Biophysica Acta - General Subjects, 1863(12), 129284.
https://doi.org/10.1016/j.bbagen.2019.01.006
[11] Parks, J. M., Guo, H., Momany, C., Liang, L., Miller, S. M., Summers, A. O., & Smith, J. C. (2009). Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. Journal of the American Chemical Society, 131(37), 13278–13285.
https://doi.org/10.1021/ja9016123
[12] Skerfving, S. B., & Copplestone, J. F. (1976). Poisoning caused by the consumption of organomercury-dressed seed in Iraq. Bulletin of the World Health Organization, 54(1), 101–112.
[13] Sone, Y., Nakamura, R., Pan-Hou, H., Itoh, T., & Kiyono, M. (2013). Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in escherichia coli. Biological and Pharmaceutical Bulletin, 36(11), 1835–1841.
https://doi.org/10.1248/bpb.b13-00554
[14] Sone, Y., Nakamura, R., Pan-Hou, H., Sato, M. H., Itoh, T., & Kiyono, M. (2013). Increase methylmercury accumulation in arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express, 3(1), 1–8.
https://doi.org/10.1186/2191-0855-3-52
[15] Thackray, C. P., & Sunderland, E. M. (2019). Seafood methylmercury in a changing ocean. In A. M. Cisneros-Montemayor, W. W. L. Cheung, & Y. B. T.-P. F. O. Ota (Eds.), Predicting Future Oceans: Sustainability of Ocean and Human Systems Amidst Global Environmental Change (pp. 61–68). Elsevier.
https://doi.org/10.1016/B978-0-12-817945-1.00006-X
[16]
https://en.wikipedia.org/wiki/Minamata_disease
[17]
https://www.phe.gov/s3/BioriskManagement/biosafety/Pages/Biosafety-Levels.aspx
[18]
https://consteril.com/biosafety-levels-difference/
[19]
https://www.concordia.ca/content/dam/concordia/services/safety/docs/EHS-DOC-112_MercuryGuidelines.pdf