Difference between revisions of "Team:IIT Roorkee/Model"

(Prototype team page)
 
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{IGEM_TopBar}}
+
<!DOCTYPE html>
{{IIT_Roorkee}}
+
<html lang="en"><head>
<html>
+
    <meta charset="utf-8"/>
 +
    <meta content="width=device-width, initial-scale=1, shrink-to-fit=no" name="viewport"/>
 +
    <meta content="Pyomancer by iGEM IIT Roorkee" name="description"/>
 +
    <meta content="Team iGEM IIT Roorkee" name="author"/>
 +
    <meta content="#272727" name="theme-color"/>
 +
    <title>PYOMANCER</title>
  
 +
    <!-- Bootstrap core CSS -->
 +
    <link href="https://2020.igem.org/Template:IIT_Roorkee/css/bootstrap-minCSS?action=raw&amp;ctype=text/css" rel="stylesheet"/>
  
 +
    <!-- Custom styles for this template -->
 +
    <link href="https://2020.igem.org/Template:IIT_Roorkee/css/igem_resetCSS?action=raw&amp;ctype=text/css" rel="stylesheet"/>
 +
    <link href="https://2020.igem.org/Template:IIT_Roorkee/css/stylesCSS?action=raw&amp;ctype=text/css" rel="stylesheet"/>
 +
  </head>
  
<div class="column full_size judges-will-not-evaluate">
+
  <body>
<h3>★  ALERT! </h3>
+
    <header>
<p>This page is used by the judges to evaluate your team for the <a href="https://2020.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2020.igem.org/Judging/Awards"> award listed below</a>. </p>
+
      <div class="navbar-overlay navbar-overlay-1"></div>
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2020.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
      <div class="navbar-overlay navbar-overlay-2"></div>
</div>
+
      <nav class="navbar navbar-expand-md navbar-dark fixed-top wiki-navbar">
 +
        <a class="navbar-brand" href="https://2020.igem.org/Team:IIT_Roorkee">PYOMANCER</a>
 +
        <button aria-controls="navbarCollapse" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler" data-target="#navbarCollapse" data-toggle="collapse" type="button">
 +
          <span class="navbar-toggler-icon"></span>
 +
        </button>
 +
        <div class="collapse navbar-collapse" id="navbarCollapse">
 +
          <ul class="navbar-nav ml-auto tabs-wrapper">
 +
            <li class="nav-item dropdown">
 +
                <a aria-expanded="false" aria-haspopup="true" class="tab nav-link" data-toggle="dropdown" href="#">
 +
                  People
 +
                </a>
 +
                <ul class="dropdown-menu">
 +
                  <li>
 +
                    <a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Team"><span>Team</span></a>
 +
                  </li>
 +
                  <li>
 +
                    <a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Attributions"><span>Attributions</span></a>
 +
                  </li>
 +
                  <li>
 +
                    <a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Sponsors"><span>Sponsors</span></a>
 +
                  </li>
 +
                </ul>
 +
              </li>
 +
            <li class="nav-item dropdown">
 +
              <a aria-expanded="false" aria-haspopup="true" class="tab nav-link" data-toggle="dropdown" href="#">
 +
                Project
 +
              </a>
 +
              <ul class="dropdown-menu">
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Description"><span>Description</span></a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Problem"><span>Problem</span></a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Design"><span>Design</span></a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Engineering"><span>Engineering</span></a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Implementation"><span>Implementation</span></a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Contribution"><span>Contributions</span></a></li>
 +
              </ul>
 +
            </li>
 +
            <li class="nav-item dropdown">
 +
              <a aria-expanded="false" aria-haspopup="true" class="tab nav-link" data-toggle="dropdown" href="#">Human Practices
 +
              </a>
 +
              <ul class="dropdown-menu">
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Human_Practices"> <span>Overview</span></a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Education"> <span>Science Communication &amp; Public Engagement</span> </a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Integrated_HP"> <span>Integrated Human Practices</span> </a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Sustainable"> <span>Sustainable Development Goals</span> </a></li>
 +
                <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Collaborations"> <span>Collaborations</span> </a></li>
 +
              </ul>
 +
            </li>
 +
            <li class="nav-item dropdown">
 +
              <a aria-expanded="false" aria-haspopup="true" class="tab nav-link nav-link-active" data-toggle="dropdown" href="#">Dry Lab
 +
              </a>
 +
              <ul class="dropdown-menu">
 +
              <li><a class="dropdown-item dropdown-item-active" href="#"> <span>Modelling</span> </a></li>
 +
              <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/DryLab_Results"> <span>Results</span> </a></li>
 +
              <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Software"> <span>Software</span> </a></li>
 +
              </ul>
 +
          </li>
 +
          <li class="nav-item dropdown">
 +
            <a aria-expanded="false" aria-haspopup="true" class="tab nav-link" data-toggle="dropdown" href="#">Wet Lab
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
            <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Experiments"> <span>Overview</span></a></li>
 +
            <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Results"> <span>Results</span> </a></li>
 +
            <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Protocols"> <span>Protocols</span> </a></li>
 +
            <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Parts"> <span>Parts</span> </a></li>
 +
            <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/Safety"> <span>Safety</span> </a></li>
 +
            <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/References"> <span>References</span> </a></li>
 +
            </ul>
 +
        </li>
 +
        <li class="nav-item dropdown">
 +
          <a aria-expanded="false" aria-haspopup="true" class="tab nav-link" data-toggle="dropdown" href="#">Machine Learning
 +
          </a>
 +
          <ul class="dropdown-menu">
 +
          <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Overview"> <span>Overview</span></a></li>
 +
          <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Model"> <span>Model</span> </a></li>
 +
          <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Results"> <span>Results</span> </a></li>
 +
          <li><a class="dropdown-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Impact"> <span>Impact</span> </a></li>
 +
          </ul>
 +
      </li>
 +
            <li class="nav-item">
 +
              <a class="tab nav-link" href="https://2020.igem.org/Team:IIT_Roorkee/Judging">Judges</a>
 +
            </li>
 +
            <li class="nav-item">
 +
              <a class="tab nav-link" href="https://2020.igem.org/Team:IIT_Roorkee/Notebook">Notebook</a>
 +
            </li>
 +
          </ul>
 +
        </div>
 +
      </nav>
 +
      <div class="header-progress">
 +
        <div class="header-progress-indicator"></div>
 +
      </div>
 +
     
 +
    </header>
  
 +
    <div class="banner banner-drylab">
 +
      <p class="text-center font-size-24">
 +
        </p><h1 class="banner-h1">Dry Lab</h1>
 +
        <h2 class="banner-h2">Modelling</h2>
 +
       
 +
        <div class="banner-overlay"></div>
 +
      <p></p>
 +
    </div>
  
<div class="clear"></div>
+
    <main class="container wiki" role="main">  
  
 +
      <div class="side-nav">
 +
        <div class="page-title">Modelling</div>
 +
        <div class="side-nav-menu">
 +
        </div>
 +
      </div>
  
<div class="column full_size">
+
      <div class="wiki-content">
<h1> Modeling</h1>
+
       
 +
        <p class="wiki-p">
 +
          During the COVID-19 pandemic, due to inaccessibility of
 +
          labs and experimentation, we couldn’t perform mathematical
 +
          modelling for our experiments. Hence, we chose bioinformatics
 +
          modelling for validating our results. It serves as a strong
 +
          proof-of-concept of our fusion protein design and we believe
 +
          that it’ll closely resemble the results expected through experiments.
 +
          <br/><br/><br/><br/><br/>
 +
        </p>
 +
       
 +
        <h2 class="wiki-h wiki-h2 wiki-section-start" id="pm_1">What is protein modelling?</h2>
 +
       
 +
        <!-- <h2 class="wiki-h wiki-h2">Heading 2</h2>
 +
        <h3 class="wiki-h wiki-h3">Heading 3</h3> -->
 +
       
 +
        <p class="wiki-p">
 +
          Bioinformatics tools can be used to model a protein structure if the
 +
          sequence of the protein is known. Computational protein structure prediction
 +
          relies on principles of protein structures obtained through X-ray crystallography,
 +
          NMR spectroscopy and other physical energy functions to predict the three-dimensional
 +
          structures of proteins. It uses various Machine Learning algorithms to develop protein
 +
          structures. There are three methods for modelling proteins:
 +
        </p>
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. </p>
 
  
</div>
+
        <button class="wiki-collapsible">
<div class="clear"></div>
+
          Methods
 +
          <svg class="wiki-chevron-down" viewBox="0 0 448 512"><path d="M207.029 381.476L12.686 187.132c-9.373-9.373-9.373-24.569 0-33.941l22.667-22.667c9.357-9.357 24.522-9.375 33.901-.04L224 284.505l154.745-154.021c9.379-9.335 24.544-9.317 33.901.04l22.667 22.667c9.373 9.373 9.373 24.569 0 33.941L240.971 381.476c-9.373 9.372-24.569 9.372-33.942 0z" fill="currentColor"></path></svg>
 +
        </button>
 +
        <div class="wiki-collapsed-content">
 +
          <ol class="wiki-ol">
 +
            <li><span class="wiki-bold">Homology Modelling: </span><br/>
 +
              This is used when we have a structurally unknown protein and a similar
 +
              structurally known protein. The structurally known protein is used as a
 +
              template to predict the structure of the unknown protein. A primary BLAST
 +
              search is performed in the Protein Data Bank (PDB) to find the template protein
 +
              that resembles the unknown protein sequence. High percentage identity, high query
 +
              coverage, high alignment score and low e-value is desired for the template sequence.
 +
              Once the matching template is found, it is then used to model the unknown structure.
 +
              Several tools can be used for performing Homology Modelling. SWISS-MODEL is commonly
 +
              used. It is a Python-based program to predict the protein structure.
 +
            </li>
  
<div class="column full_size">
+
            <li><span class="wiki-bold">Threading/Fold-recognition method: </span><br/>
<h3> Gold Medal Criterion #3</h3>
+
              With this method, you can predict the protein structures of your target protein
<p>
+
              using known protein folds of similar proteins found in different databases.  
Use modeling to gain insight into how your project works or should be implemented. Explain your model's assumptions, data, parameters, and results in a way that anyone could understand.
+
              Web-server I-Tasser was used for modelling the protein using this method.
<br><br>
+
            </li>
Please see the <a href="https://2020.igem.org/Judging/Medals">2020 Medals Page</a> for more information.  
+
</p>
+
  
</div>
+
            <li><span class="wiki-bold">Ab-Initio method: </span><br/>
 +
              When nothing is known about the protein structure or in other words structural
 +
              information is not available for similar protein, this method is used to model
 +
              the protein structure from scratch. Most favourable energy conformations for the
 +
              protein are taken into account while modelling the protein using this method.
 +
              Robetta-Baker Lab’s online modelling server was used to model our protein using this method.
 +
            </li>
 +
          </ol>
 +
        </div><br/>
  
<div class="column two_thirds_size">
+
             
<h3>Best Model Special Prize</h3>
+
       
 +
        <h2 class="wiki-h wiki-h2 wiki-section-start" id="our_approach">Our Approach:</h2><br/>
 +
        <h4 class="wiki-h wiki-h4">Protein Sequence</h4>
 +
        <!-- <h2 class="wiki-h wiki-h2">Heading 2</h2>
 +
        <h3 class="wiki-h wiki-h3">Heading 3</h3> -->
 +
       
 +
        <p class="wiki-p">
 +
          R2 tail fiber protein sequence comprises 691 amino acids. The AP22
 +
          bacteriophage tail fiber protein that targets <i><i><i>A. baumannii</i></i></i> is 271 amino
 +
          acids in length. However, through literature review, it was found that the
 +
          R2 pyocin- NTF (N-truncated fragment) (G-443 to R-691) is sufficient to
 +
          bind to the bacterial surface. Therefore, only the N-truncated fragment was modelled. <br/>
 +
          Through preliminary bioinformatics analysis during fusion protein design, we
 +
          identified the restriction sites needed to create an R2 pyocin-AP22 fusion protein.
 +
          It was inferred that removing the last 134 amino acids of the R2 pyocin tail fiber
 +
          protein sequence and ligating the last 137 amino acids of the AP22 bacteriophage
 +
          sequence to this truncated pyocin sequence would create a functional fusion product.
 +
        </p>
  
<p>
+
        <p class="wiki-p">
To compete for the <a href="https://2020.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2020.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the Gold Medal criterion #3 and the Best Model prize with this page.
+
          <span style="color:#008000;">
</p>
+
          &gt;R2-NTF tail fiber Sequence<br/>
 +
          GSFTKEADGELPGGVNLDSMVTSGWWSQSFTAQAASGANYPIVRAGLLHVYAASSNFIYQTYQAYDGESFYFRCRHSNTWFPWRRMWHGGDFNPSDYLLKSGFYWNALPGKPATF
 +
          </span>
 +
          <span style="color:#0000FF;">
 +
          PPSAHNHDVGQLTSGILPLARGGVGSNTAAGARSTIGAGVPATASLGASGWWRDNDTGLIRQWGQVTCPADADASITFPIPFPTLCLGGYANQTSAFHPGTDASTGFRGATTTTAVIRNGYFAQAVLSWEAFGR
 +
          </span>
 +
        </p>
 +
        <p class="wiki-p">
 +
          <span style="color:#F7A13D;">
 +
          &gt;AP22 tail fiber protein<br/>
 +
          MANPIFIPMAFAANGIKNLIQKVRQVGQDPEDFTWDEGAPLITMTKIEDGGKAPKGQDFNGVLNALSEHVIYGQNGNRYTWSQDVVDEFGGYALGAIVQSNDTTKEFRSLIANNTVNPNNGLGGAWEVYSGQGS
 +
          </span>
 +
          <span style="color:#FF0000;">
 +
          IPTATSTTAGITKVLNVLNSNDVGSALSAAQGKVLNDKFNFQNSKNQSGYVRLGDSGLIIQWGVFTSTKTQSNLIFPLAFPNALLSITGNLNSNTPDVIGIDFDLSTATKTSIKTGAAQVGASWLSGKKISWIAIGY
 +
          </span>
 +
        </p>
  
</div>
+
        <p class="wiki-p">
 +
          The last 134 amino acids from the R2-NTF pyocin were removed
 +
          and the last 137 amino acids of the AP22 phage were inserted
 +
          in the remaining sequence to generate the R2-NTF-AP22 fusion
 +
          tail fiber protein sequence.
 +
        </p>
 +
        <p class="wiki-p">
 +
          <span style="color:#008000;">
 +
          &gt;R2-NTF-AP22 Fusion tail fiber<br/>
 +
          GSFTKEADGELPGGVNLDSMVTSGWWSQSFTAQAASGANYPIVRAGLLHVYAASSNFIYQTYQAYDGESFYFRCRHSNTWFPWRRMWHGGDFNPSDYLLKSGFYWNALPGKPATF
 +
          </span>
 +
          <span style="color:#FF0000;">
 +
          IPTATSTTAGITKVLNVLNSNDVGSALSAAQGKVLNDKFNFQNSKNQSGYVRLGDSGLIIQWGVFTSTKTQSNLIFPLAFPNALLSITGNLNSNTPDVIGIDFDLSTATKTSIKTGAAQVGASWLSGKKISWIAIGY
 +
          </span>
 +
        </p>
  
 +
        <div class="wiki-graphic">
 +
          <img alt="Design Figure" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/5/5d/T--IIT_Roorkee--images--images--DL_Modelling_Design_figure.png"/>
 +
          <div class="wiki-graphic-reference">Design Figure</div>
 +
        </div>
  
<div class="column third_size">
+
        <p class="wiki-p">
<div class="highlight decoration_A_full">
+
          We model this sequence of the fusion tail fiber using all the three
<h3> Inspiration </h3>
+
          modelling methods discussed above. <br/>
<p>
+
          In homology modelling, we use the sequence input for modelling.
Here are a few examples from previous teams:
+
          After entering the sequence of the fusion protein in the fasta format
</p>
+
          we searched for templates on the platform. 6cl6 was chosen as a template
<ul>
+
          structure as it had a GMQE score of 0.71 and identity of 63.64 and the target
<li><a href="https://2018.igem.org/Team:GreatBay_China/Model">2018 GreatBay China</a></li>
+
          model was predicted to be a homo-trimer. The GMQE (Global Model Quality Estimation)
<li><a href="https://2018.igem.org/Team:Leiden/Model">2018 Leiden</a></li>
+
          score is a quality estimation which combines properties from the target–template alignment
<li><a href="https://2016.igem.org/Team:Manchester/Model">2016 Manchester</a></li>
+
          and the template search method. The resulting GMQE score is expressed as a number between
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">2016 TU Delft</li>
+
          0 and 1, reflecting the expected accuracy of a model built with that alignment and template
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">2014 ETH Zurich</a></li>
+
          and the coverage of the target. Higher numbers indicate higher reliability.  
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">2014 Waterloo</a></li>
+
          It also takes into account the QMEAN score to increase the reliability of the quality estimation.
</ul>
+
        </p>
</div>
+
</div>
+
  
</html>
+
        <p class="wiki-p">
 +
          For threading and ab-initio modelling, we submitted our target sequence on
 +
          the I-Tasser &amp; Robetta Baker Lab’s modelling server respectively and results were obtained via email.
 +
        </p>
 +
        <br/><br/><br/>
 +
       
 +
        <h4 class="wiki-h wiki-h4">Protein Structure</h4>
 +
        <!-- <h2 class="wiki-h wiki-h2">Heading 2</h2>
 +
        <h3 class="wiki-h wiki-h3">Heading 3</h3> -->
 +
       
 +
        <p class="wiki-p">
 +
          The overall structure of the trimeric R2-NTF is a barbell-like protein,
 +
          with a three-domain organization consisting of a “head”, medial “shaft”,
 +
          and “foot”. The head (G443-M525) and foot domains (P598-R691) are globular
 +
          and connected by an intertwined, helical, and fibrous-looking shaft (W529-V597).
 +
        </p>
 +
        <p class="wiki-p">
 +
          We modelled our protein through all the three methods and compared the results of our models.
 +
          The models obtained through threading were monomers and since our native structure is a trimer,
 +
          we didn’t consider the monomeric models. The models obtained through homology modelling &amp; ab-initio
 +
          were trimers and were considered &amp; further compared to choose the best model.
 +
 
 +
        </p><br/><br/><br/><br/><br/>
 +
 
 +
        <h2 class="wiki-h wiki-h2 wiki-section-start" id="obtained_models">Obtained Models:</h2><br/>
 +
 
 +
 
 +
 
 +
        <button class="wiki-collapsible">
 +
          Homology Modelling
 +
          <svg class="wiki-chevron-down" viewBox="0 0 448 512"><path d="M207.029 381.476L12.686 187.132c-9.373-9.373-9.373-24.569 0-33.941l22.667-22.667c9.357-9.357 24.522-9.375 33.901-.04L224 284.505l154.745-154.021c9.379-9.335 24.544-9.317 33.901.04l22.667 22.667c9.373 9.373 9.373 24.569 0 33.941L240.971 381.476c-9.373 9.372-24.569 9.372-33.942 0z" fill="currentColor"></path></svg>
 +
        </button>
 +
        <div class="wiki-collapsed-content">
 +
          <p class="wiki-p">
 +
            The SWISS-MODEL template library (SMTL version 2020-09-09, PDB release 2020-09-04)
 +
            was searched with BLAST and HHBlits for evolutionary related structures matching the target sequence of the fusion protein. Overall 43 templates
 +
            were found and the best one was chosen. 6cl6.1.A having a sequence identity of 63.64,
 +
            a sequence similarity of 0.49 and a coverage of 0.96 was chosen as the template.
 +
            The QSQE score is a number between 0 and 1, reflecting the expected accuracy of the
 +
            interchain contacts for a model built based on a given alignment and template.
 +
            In general, a higher QSQE is "better", while a value above 0.7 can be considered
 +
            reliable to follow the predicted quaternary structure in the modelling process.
 +
            The chosen template had a QSQE score of 0.79, indicating it to be a good template for modelling. 
 +
          </p>
 +
 
 +
          <p class="wiki-p">
 +
            Template Parameters - 
 +
          </p>
 +
 
 +
          <div class="table-responsive">
 +
            <table class="table table-hover table-bordered">
 +
              <thead class="thead-dark">
 +
                <tr>
 +
                  <th scope="col">Template</th>
 +
                  <th scope="col">Seq Identity</th>
 +
                  <th scope="col">Oligo-state</th>
 +
                  <th scope="col">QSQE</th>
 +
                  <th scope="col">Found by</th>
 +
                  <th scope="col">Method</th>
 +
                  <th scope="col">Resolution</th>
 +
                  <th scope="col">Sew Similarity</th>
 +
                  <th scope="col">Range</th>
 +
                  <th scope="col">Coverage</th>
 +
                  <th scope="col">Description</th>
 +
                </tr>
 +
              </thead>
 +
              <tbody>
 +
                <tr>
 +
                  <td>6cl6.1.A</td>
 +
                  <td>63.64</td>
 +
                  <td>homo-trimer</td>
 +
                  <td>0.79</td>
 +
                  <td>BLAST</td>
 +
                  <td>X-Ray</td>
 +
                  <td>1.90Å</td>
 +
                  <td>0.49</td>
 +
                  <td>1 - 251</td>
 +
                  <td>0.96</td>
 +
                  <td>Tail fiber protein</td>
 +
                </tr>
 +
              </tbody>
 +
            </table>
 +
          </div>
 +
 
 +
          <p class="wiki-p">
 +
            Model Parameters - 
 +
          </p>
 +
 
 +
          <div class="table-responsive">
 +
            <table class="table table-hover table-bordered">
 +
              <thead class="thead-dark">
 +
                <tr>
 +
                  <th scope="col">Built with </th>
 +
                  <th scope="col">Oligo-state</th>
 +
                  <th scope="col">Ligands </th>
 +
                  <th scope="col">GMQE</th>
 +
                  <th scope="col">QMEAN</th>
 +
                </tr>
 +
              </thead>
 +
              <tbody>
 +
                <tr>
 +
                  <td>ProMod3 3.1.1</td>
 +
                  <td>homo-trimer (matching prediction)</td>
 +
                  <td>None</td>
 +
                  <td>0.77</td>
 +
                  <td>-3.42</td>
 +
                </tr>
 +
              </tbody>
 +
            </table>
 +
          </div>
 +
 
 +
          <div class="wiki-graphic">
 +
            <img alt="Homology Model" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/1/12/T--IIT_Roorkee--images--images--DL_Modelling_Homology_model.png"/>
 +
            <div class="wiki-graphic-reference">Homology Model</div>
 +
          </div>
 +
        </div>
 +
 
 +
       
 +
 
 +
        <button class="wiki-collapsible">
 +
          Threading/Fold-Recognition
 +
          <svg class="wiki-chevron-down" viewBox="0 0 448 512"><path d="M207.029 381.476L12.686 187.132c-9.373-9.373-9.373-24.569 0-33.941l22.667-22.667c9.357-9.357 24.522-9.375 33.901-.04L224 284.505l154.745-154.021c9.379-9.335 24.544-9.317 33.901.04l22.667 22.667c9.373 9.373 9.373 24.569 0 33.941L240.971 381.476c-9.373 9.372-24.569 9.372-33.942 0z" fill="currentColor"></path></svg>
 +
        </button>
 +
        <div class="wiki-collapsed-content">
 +
          <p class="wiki-p">
 +
            The fusion protein sequence was submitted for modelling on
 +
            the I-Tasser web server and the modelling results were obtained
 +
            via email. Top 5 models are predicted by I-Tasser using the threading
 +
            approach for protein modelling. The confidence of each model is
 +
            quantitatively measured by a C-score that is calculated based on
 +
            the significance of threading template alignments and the convergence
 +
            parameters of the structure assembly simulations. C-score is typically
 +
            in the range of [-5, 2], where a C-score of a higher value signifies a
 +
            model with higher confidence and vice-versa. 
 +
          </p>
 +
 
 +
          <div class="table-responsive">
 +
            <table class="table table-hover table-bordered">
 +
              <thead class="thead-dark">
 +
                <tr>
 +
                  <th scope="col">I-Tasser Models </th>
 +
                  <th scope="col">C-Scores</th>
 +
                </tr>
 +
              </thead>
 +
              <tbody>
 +
                <tr>
 +
                  <th scope="row">Model 1</th>
 +
                  <td>0.71</td>
 +
                </tr>
 +
                <tr>
 +
                  <th scope="row">Model 2</th>
 +
                  <td>-2.15</td>
 +
                </tr>
 +
                <tr>
 +
                  <th scope="row">Model 3</th>
 +
                  <td>-2.70</td>
 +
                </tr>
 +
                <tr>
 +
                  <th scope="row">Model 4</th>
 +
                  <td>-1.50</td>
 +
                </tr>
 +
                <tr>
 +
                  <th scope="row">Model 5</th>
 +
                  <td>-4.08</td>
 +
                </tr>
 +
              </tbody>
 +
            </table>
 +
          </div>
 +
 
 +
          <p class="wiki-p">
 +
            All the 5 models obtained were monomers and through
 +
            C-score comparison model 1 comes out to be the best model predicted by this method.
 +
          </p>
 +
 
 +
 
 +
 
 +
 
 +
          <div class="carousel slide" data-ride="carousel" id="carousel2">
 +
            <div class="carousel-inner">
 +
              <div class="carousel-item active" style="background-image:url(https://static.igem.org/mediawiki/2020/8/8b/T--IIT_Roorkee--images--images--DL_Modelling_Threading_model_1.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Threading Model 1</h5>
 +
                 
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/b/b3/T--IIT_Roorkee--images--images--DL_Modelling_Threading_model_2.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Threading Model 2</h5>
 +
                 
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/f/f3/T--IIT_Roorkee--images--images--DL_Modelling_Threading_model_3.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Threading Model 3</h5>
 +
                 
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/8/84/T--IIT_Roorkee--images--images--DL_Modelling_Threading_model_4.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Threading Model 4</h5>
 +
                 
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/1/17/T--IIT_Roorkee--images--images--DL_Modelling_Threading_model_5.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Threading Model 5</h5>
 +
                 
 +
                </div>
 +
              </div>
 +
            </div>
 +
            <a class="carousel-control-prev" data-slide="prev" href="#carousel2" role="button">
 +
              <span aria-hidden="true" class="carousel-control-prev-icon"></span>
 +
              <span class="sr-only">Previous</span>
 +
            </a>
 +
            <a class="carousel-control-next" data-slide="next" href="#carousel2" role="button">
 +
              <span aria-hidden="true" class="carousel-control-next-icon"></span>
 +
              <span class="sr-only">Next</span>
 +
            </a>
 +
          </div> 
 +
        </div>
 +
 
 +
 
 +
       
 +
 
 +
 
 +
        <button class="wiki-collapsible">
 +
          Ab-initio Modelling
 +
          <svg class="wiki-chevron-down" viewBox="0 0 448 512"><path d="M207.029 381.476L12.686 187.132c-9.373-9.373-9.373-24.569 0-33.941l22.667-22.667c9.357-9.357 24.522-9.375 33.901-.04L224 284.505l154.745-154.021c9.379-9.335 24.544-9.317 33.901.04l22.667 22.667c9.373 9.373 9.373 24.569 0 33.941L240.971 381.476c-9.373 9.372-24.569 9.372-33.942 0z" fill="currentColor"></path></svg>
 +
        </button>
 +
        <div class="wiki-collapsed-content">
 +
          <p class="wiki-p">
 +
            The fusion protein sequence was submitted on the Robetta Baker Lab web server.
 +
            The modelling results were obtained in a couple of days and 5 best models were
 +
            predicted for the fusion protein sequence. All the suggested models were
 +
            homo-trimers similar to the native R2-NTF pyocin structure. 
 +
          </p>
 +
 
 +
 
 +
 
 +
 
 +
          <div class="carousel slide" data-ride="carousel" id="carousel3">
 +
            <div class="carousel-inner">
 +
              <div class="carousel-item active" style="background-image:url(https://static.igem.org/mediawiki/2020/a/a8/T--IIT_Roorkee--images--images--DL_Modelling_ab-initio_model_1.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Ab-initio Model 1</h5>
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/d/d1/T--IIT_Roorkee--images--images--DL_Modelling_ab-initio_model_2.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Ab-initio Model 2</h5>
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/4/4c/T--IIT_Roorkee--images--images--DL_Modelling_ab-initio_model_3.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Ab-initio Model 3</h5>
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/b/b3/T--IIT_Roorkee--images--images--DL_Modelling_ab-initio_model_4.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Ab-initio Model 4</h5>
 +
                </div>
 +
              </div>
 +
              <div class="carousel-item" style="background-image:url(https://static.igem.org/mediawiki/2020/9/9b/T--IIT_Roorkee--images--images--DL_Modelling_ab-initio_model_5.png)">
 +
                <div class="carousel-caption d-none d-md-block">
 +
                  <h5 class="wiki-h5 wiki-bold">Ab-initio Model 5</h5>
 +
                </div>
 +
              </div>
 +
            </div>
 +
            <a class="carousel-control-prev" data-slide="prev" href="#carousel3" role="button">
 +
              <span aria-hidden="true" class="carousel-control-prev-icon"></span>
 +
              <span class="sr-only">Previous</span>
 +
            </a>
 +
            <a class="carousel-control-next" data-slide="next" href="#carousel3" role="button">
 +
              <span aria-hidden="true" class="carousel-control-next-icon"></span>
 +
              <span class="sr-only">Next</span>
 +
            </a>
 +
          </div> 
 +
        </div>
 +
 
 +
       
 +
 
 +
 
 +
        <br/><br/><br/><br/><br/><br/><br/>
 +
 
 +
           
 +
 
 +
      </div>
 +
    </main>
 +
 
 +
    <div class="fab-border"></div>
 +
    <a class="fab" href="#">
 +
      <img class="fab-next-section" data-placement="left" data-toggle="tooltip" src="https://static.igem.org/mediawiki/2020/f/fb/T--IIT_Roorkee--images--icons--next.svg" title="Next section"/>
 +
      <img class="fab-top-section" data-placement="left" data-toggle="tooltip" src="https://static.igem.org/mediawiki/2020/8/8e/T--IIT_Roorkee--images--icons--top.svg" title="Top"/>
 +
    </a>
 +
    <div class="circular-progress-container">
 +
      <svg class="progress-svg" viewBox="0 0 84 84">
 +
        <circle class="progress-pie" cx="42" cy="42" r="40"></circle>
 +
      </svg>
 +
    </div>
 +
 
 +
    <footer class="footer">
 +
      <div class="footer-brand"><a class="" href="#">iGEM IIT Roorkee</a></div>
 +
      <div class="footer-lists">
 +
        <div class="footer-list">
 +
          <div class="footer-list-title">People</div>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Team"><span>Team</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Attributions"><span>Attributions</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Sponsors"><span>Sponsors</span></a>
 +
        </div>
 +
        <div class="footer-list">
 +
          <div class="footer-list-title">Project</div>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Description"><span>Description</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Problem"><span>Problem</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Design"><span>Design</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Engineering"><span>Engineering</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Implementation"><span>Implementation</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Contribution"><span>Contributions</span></a>
 +
        </div>
 +
        <div class="footer-list">
 +
          <div class="footer-list-title">Human Practices</div>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Human_Practices"><span>Overview</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Education"><span>Science Communication and Public Engagement</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Integrated_HP"><span>Integrated Human Practices</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Sustainable"><span>Sustainable Development Goals</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Collaborations"><span>Collaborations</span></a>
 +
        </div>
 +
        <div class="footer-list">
 +
          <div class="footer-list-title">Dry Lab</div>
 +
          <a class="tab footer-list-item footer-list-item-active" href="#"><span>Modelling</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/DryLab_Results"><span>Results</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Software"><span>Software</span></a>
 +
        </div>
 +
        <div class="footer-list">
 +
          <div class="footer-list-title">Wet Lab</div>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Experiments"><span>Overview</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Results"><span>Results</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Protocols"><span>Protocols</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Parts"><span>Parts</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/Safety"><span>Safety</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/References"><span>References</span></a>
 +
        </div>
 +
        <div class="footer-list">
 +
          <div class="footer-list-title">Machine Learning</div>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Overview"><span>Overview</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Model"><span>Model</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Results"><span>Results</span></a>
 +
          <a class="tab footer-list-item" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Impact"><span>Impact</span></a>
 +
        </div>
 +
      </div>
 +
      <div class="footer-info">
 +
        <div class="footer-info-address">
 +
          <div class="footer-address">
 +
            The Department of Biotechnology, <br/>
 +
            Indian Institute of Technology, Roorkee <br/>
 +
            Roorkee, Uttarakhand, <br/>
 +
            India - 247667
 +
            </div>
 +
          <img class="footer-james-thomason" src="https://static.igem.org/mediawiki/2020/a/a2/T--IIT_Roorkee--images--images--james_thomason_building.svg"/>
 +
        </div>
 +
        <div class="footer-info-socials">
 +
          <div class="footer-section-heading">Contact us:</div>
 +
          <div class="contacts">
 +
            <a class="contact" href="tel:+011-2875468"><span>+011-2875468</span></a>
 +
            <a class="contact" href="tel:+91-76487699"><span>+91-76487699</span></a>
 +
            <a class="contact" href="mailto:igem@iitr.ac.in"><span>igem@iitr.ac.in</span></a>
 +
          </div>
 +
          <div class="footer-section-heading">Follow us on:</div>
 +
          <div class="socials">
 +
            <a class="social" href="https://www.instagram.com/igem_iitr/"><img alt="Instagrm" src="https://static.igem.org/mediawiki/2020/7/78/T--IIT_Roorkee--images--icons--instagram.svg"/></a>
 +
            <a class="social" href="https://www.facebook.com/IGEM-IIT-Roorkee-111403760578466"><img alt="Facebook" src="https://static.igem.org/mediawiki/2020/1/1c/T--IIT_Roorkee--images--icons--facebook.svg"/></a>
 +
            <a class="social" href="https://twitter.com/igem_iitr"><img alt="Twitter" src="https://static.igem.org/mediawiki/2020/c/ca/T--IIT_Roorkee--images--icons--twitter.svg"/></a>
 +
          </div>
 +
        </div>
 +
        <img class="footer-james-thomason-mobile" src="https://static.igem.org/mediawiki/2020/a/a2/T--IIT_Roorkee--images--images--james_thomason_building.svg"/>
 +
      </div>
 +
    </footer>
 +
 
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/igem-resetJS?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/jquery-slim-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
   
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/jquery-waypoints-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/popper-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/bootstrap-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/holder-minJS?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2020.igem.org/Template:IIT_Roorkee/js/indexJS?action=raw&amp;ctype=text/javascript"></script>
 +
    <script>
 +
      Holder.addTheme("thumb", {
 +
        bg: "#55595c",
 +
        fg: "#eceeef",
 +
        text: "Thumbnail",
 +
      });
 +
    </script>
 +
 
 +
 
 +
</body></html>

Latest revision as of 11:41, 26 October 2020

<!DOCTYPE html> PYOMANCER

Modelling

During the COVID-19 pandemic, due to inaccessibility of labs and experimentation, we couldn’t perform mathematical modelling for our experiments. Hence, we chose bioinformatics modelling for validating our results. It serves as a strong proof-of-concept of our fusion protein design and we believe that it’ll closely resemble the results expected through experiments.




What is protein modelling?

Bioinformatics tools can be used to model a protein structure if the sequence of the protein is known. Computational protein structure prediction relies on principles of protein structures obtained through X-ray crystallography, NMR spectroscopy and other physical energy functions to predict the three-dimensional structures of proteins. It uses various Machine Learning algorithms to develop protein structures. There are three methods for modelling proteins:

  1. Homology Modelling:
    This is used when we have a structurally unknown protein and a similar structurally known protein. The structurally known protein is used as a template to predict the structure of the unknown protein. A primary BLAST search is performed in the Protein Data Bank (PDB) to find the template protein that resembles the unknown protein sequence. High percentage identity, high query coverage, high alignment score and low e-value is desired for the template sequence. Once the matching template is found, it is then used to model the unknown structure. Several tools can be used for performing Homology Modelling. SWISS-MODEL is commonly used. It is a Python-based program to predict the protein structure.
  2. Threading/Fold-recognition method:
    With this method, you can predict the protein structures of your target protein using known protein folds of similar proteins found in different databases. Web-server I-Tasser was used for modelling the protein using this method.
  3. Ab-Initio method:
    When nothing is known about the protein structure or in other words structural information is not available for similar protein, this method is used to model the protein structure from scratch. Most favourable energy conformations for the protein are taken into account while modelling the protein using this method. Robetta-Baker Lab’s online modelling server was used to model our protein using this method.

Our Approach:


Protein Sequence

R2 tail fiber protein sequence comprises 691 amino acids. The AP22 bacteriophage tail fiber protein that targets A. baumannii is 271 amino acids in length. However, through literature review, it was found that the R2 pyocin- NTF (N-truncated fragment) (G-443 to R-691) is sufficient to bind to the bacterial surface. Therefore, only the N-truncated fragment was modelled.
Through preliminary bioinformatics analysis during fusion protein design, we identified the restriction sites needed to create an R2 pyocin-AP22 fusion protein. It was inferred that removing the last 134 amino acids of the R2 pyocin tail fiber protein sequence and ligating the last 137 amino acids of the AP22 bacteriophage sequence to this truncated pyocin sequence would create a functional fusion product.

>R2-NTF tail fiber Sequence
GSFTKEADGELPGGVNLDSMVTSGWWSQSFTAQAASGANYPIVRAGLLHVYAASSNFIYQTYQAYDGESFYFRCRHSNTWFPWRRMWHGGDFNPSDYLLKSGFYWNALPGKPATF
PPSAHNHDVGQLTSGILPLARGGVGSNTAAGARSTIGAGVPATASLGASGWWRDNDTGLIRQWGQVTCPADADASITFPIPFPTLCLGGYANQTSAFHPGTDASTGFRGATTTTAVIRNGYFAQAVLSWEAFGR

>AP22 tail fiber protein
MANPIFIPMAFAANGIKNLIQKVRQVGQDPEDFTWDEGAPLITMTKIEDGGKAPKGQDFNGVLNALSEHVIYGQNGNRYTWSQDVVDEFGGYALGAIVQSNDTTKEFRSLIANNTVNPNNGLGGAWEVYSGQGS
IPTATSTTAGITKVLNVLNSNDVGSALSAAQGKVLNDKFNFQNSKNQSGYVRLGDSGLIIQWGVFTSTKTQSNLIFPLAFPNALLSITGNLNSNTPDVIGIDFDLSTATKTSIKTGAAQVGASWLSGKKISWIAIGY

The last 134 amino acids from the R2-NTF pyocin were removed and the last 137 amino acids of the AP22 phage were inserted in the remaining sequence to generate the R2-NTF-AP22 fusion tail fiber protein sequence.

>R2-NTF-AP22 Fusion tail fiber
GSFTKEADGELPGGVNLDSMVTSGWWSQSFTAQAASGANYPIVRAGLLHVYAASSNFIYQTYQAYDGESFYFRCRHSNTWFPWRRMWHGGDFNPSDYLLKSGFYWNALPGKPATF
IPTATSTTAGITKVLNVLNSNDVGSALSAAQGKVLNDKFNFQNSKNQSGYVRLGDSGLIIQWGVFTSTKTQSNLIFPLAFPNALLSITGNLNSNTPDVIGIDFDLSTATKTSIKTGAAQVGASWLSGKKISWIAIGY

Design Figure
Design Figure

We model this sequence of the fusion tail fiber using all the three modelling methods discussed above.
In homology modelling, we use the sequence input for modelling. After entering the sequence of the fusion protein in the fasta format we searched for templates on the platform. 6cl6 was chosen as a template structure as it had a GMQE score of 0.71 and identity of 63.64 and the target model was predicted to be a homo-trimer. The GMQE (Global Model Quality Estimation) score is a quality estimation which combines properties from the target–template alignment and the template search method. The resulting GMQE score is expressed as a number between 0 and 1, reflecting the expected accuracy of a model built with that alignment and template and the coverage of the target. Higher numbers indicate higher reliability. It also takes into account the QMEAN score to increase the reliability of the quality estimation.

For threading and ab-initio modelling, we submitted our target sequence on the I-Tasser & Robetta Baker Lab’s modelling server respectively and results were obtained via email.




Protein Structure

The overall structure of the trimeric R2-NTF is a barbell-like protein, with a three-domain organization consisting of a “head”, medial “shaft”, and “foot”. The head (G443-M525) and foot domains (P598-R691) are globular and connected by an intertwined, helical, and fibrous-looking shaft (W529-V597).

We modelled our protein through all the three methods and compared the results of our models. The models obtained through threading were monomers and since our native structure is a trimer, we didn’t consider the monomeric models. The models obtained through homology modelling & ab-initio were trimers and were considered & further compared to choose the best model.






Obtained Models:


The SWISS-MODEL template library (SMTL version 2020-09-09, PDB release 2020-09-04) was searched with BLAST and HHBlits for evolutionary related structures matching the target sequence of the fusion protein. Overall 43 templates were found and the best one was chosen. 6cl6.1.A having a sequence identity of 63.64, a sequence similarity of 0.49 and a coverage of 0.96 was chosen as the template. The QSQE score is a number between 0 and 1, reflecting the expected accuracy of the interchain contacts for a model built based on a given alignment and template. In general, a higher QSQE is "better", while a value above 0.7 can be considered reliable to follow the predicted quaternary structure in the modelling process. The chosen template had a QSQE score of 0.79, indicating it to be a good template for modelling.

Template Parameters -

Template Seq Identity Oligo-state QSQE Found by Method Resolution Sew Similarity Range Coverage Description
6cl6.1.A 63.64 homo-trimer 0.79 BLAST X-Ray 1.90Å 0.49 1 - 251 0.96 Tail fiber protein

Model Parameters -

Built with Oligo-state Ligands GMQE QMEAN
ProMod3 3.1.1 homo-trimer (matching prediction) None 0.77 -3.42
Homology Model
Homology Model

The fusion protein sequence was submitted for modelling on the I-Tasser web server and the modelling results were obtained via email. Top 5 models are predicted by I-Tasser using the threading approach for protein modelling. The confidence of each model is quantitatively measured by a C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of a higher value signifies a model with higher confidence and vice-versa.

I-Tasser Models C-Scores
Model 1 0.71
Model 2 -2.15
Model 3 -2.70
Model 4 -1.50
Model 5 -4.08

All the 5 models obtained were monomers and through C-score comparison model 1 comes out to be the best model predicted by this method.

The fusion protein sequence was submitted on the Robetta Baker Lab web server. The modelling results were obtained in a couple of days and 5 best models were predicted for the fusion protein sequence. All the suggested models were homo-trimers similar to the native R2-NTF pyocin structure.