Difference between revisions of "Team:Virginia/Engineering"

 
(16 intermediate revisions by the same user not shown)
Line 36: Line 36:
 
         <div class="topnav">
 
         <div class="topnav">
 
           <div class="dropdown">
 
           <div class="dropdown">
             <a class="active mainitem" href="#home">HOME</a>
+
             <a class="mainitem" href="https://2020.igem.org/Team:Virginia">HOME</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia">Main</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia">Main</a>
               <a class="hvr-sweep-to-right" href="#abstract">Abstract</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia#abstract">Abstract</a>
              <a class="hvr-sweep-to-right" href="#problem">Problem</a>
+
              <a class="hvr-sweep-to-right" href="#solution">Solution</a>
+
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 47: Line 45:
 
             <a class="mainitem" href="#project">PROJECT</a>
 
             <a class="mainitem" href="#project">PROJECT</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Inspiration">Inspiration</a>
 
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Description">Description</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Description">Description</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Design">Design</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Design">Design</a>
Line 53: Line 50:
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Results">Results</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Results">Results</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Model">Modeling</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Model">Modeling</a>
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Device">Device</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Engineering">Engineering</a>
 +
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Implementation">Implementation</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Notebook">Notebook</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Notebook">Notebook</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Safety">Safety</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Safety">Safety</a>
Line 61: Line 59:
 
             <a class="mainitem" href="#parts">PARTS</a>
 
             <a class="mainitem" href="#parts">PARTS</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/New_parts">New Parts</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/New_parts"> Parts</a>
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Utilized_parts">Utilized Parts</a>
+
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 71: Line 68:
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Public_engagement">Public Engagement</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Public_engagement">Public Engagement</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Collaborations">Collaborations</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Collaborations">Collaborations</a>
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Meetups">Meet Ups</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Contribution">Contributions</a>
 +
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Entrepreneurship">Entrepreneurship</a>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 79: Line 77:
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Members">Members</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Members">Members</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Attributions">Attributions</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Attributions">Attributions</a>
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Gallery">Gallery</a>
 
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 92: Line 89:
 
             <a class="mainitem" href="#about">RESOURCES</a>
 
             <a class="mainitem" href="#about">RESOURCES</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Papers">Papers</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Papers">Sources</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/nucleic_acids">Nucleic Acids</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/nucleic_acids">Nucleic Acids</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Protocols">Protocols</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Protocols">Protocols</a>
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Software">Software</a>
 
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 118: Line 114:
 
       <div class="contentHolder">
 
       <div class="contentHolder">
 
           <div class="genTitle">
 
           <div class="genTitle">
             <div>General Template Page</div>
+
             <div>Engineering</div>
 
           </div>
 
           </div>
           <div class="sectionTitle" id="Section 1">Section 1</div>
+
           <div class="sectionTitle" id="Section 1">Asking New Questions</div>
 
           <div class="bar"></div>
 
           <div class="bar"></div>
 
           <div class="section">
 
           <div class="section">
 
             <div class="paragraph">
 
             <div class="paragraph">
                 The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of <div class="dict">bacterial microcompartments<span><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Carboxysome_and_bacterial_microcompartments.jpg/800px-Carboxysome_and_bacterial_microcompartments.jpg"/>Bacterial microcompartments (BMCs) are organelle-like structures, consisting of a protein shell that encloses enzymes and other proteins. BMCs are typically about 40–200 nanometers in diameter and are entirely made of proteins. The shell functions like a membrane, as it is selectively permeable.</span></div> (BMCs) with encapsulated dsDNA scaffolds <div class="ref">[1]<span>Elbaz, J., Yin, P., &amp; Voigt, C. A. (2016). Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature communications, 7(1), 1-11.</span></div> that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis. The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of bacterial microcompartments (BMCs) with encapsulated dsDNA scaffolds that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis.
+
                 Manifold introduces many significant improvements to the efficiency and capability of biosynthesis. Bacterial compartmentalization increases metabolic yield by decreasing the available reaction space and controlling metabolite passage. However, this advancement introduces a difficulty derived from the use of bacterial microcompartments for a role outside of their native application. The compartmentalization capabilities, which serve a crucial role in Manifold’s design, are due to the ability of BMCs to serve as selective barriers for metabolite diffusion. <b>While this selective diffusion is crucial to the functionality of Manifold, it also requires all precursors and coenzymes be able to diffuse through the BMC pore and enter the reaction space.</b> This requirement is an integral consideration in our continued development of Manifold and our proof of concept, resveratrol production system.
 +
            </div>
 +
            <div class="paragraph">
 +
              Our initial design utilized only the two enzymes responsible for resveratrol production, <div class="ref">4-coumarate-CoA ligase (4CL)<span>4CL converts <i>p</i>-Coumaric acid to CoA-ester as the first step in synthesizing resveratrol.</span></div> and <div class="ref">stilbene synthase (STS)<span>STS converts CoA-ester to resveratrol to complete the biosynthesis of resveratrol.</span></div>, from p-Coumaric as shown in Figure 1. In order for this reaction to occur, malonyl-CoA must be present in the reaction space <div class="ref">[1]<span>C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.</span></div>. Thus, our original design required the diffusion of malonyl-CoA through the BMC pore. An investigation of this metabolite in relation to the pore (for more information see the <a href="https://2020.igem.org/Team:Virginia/Model">Modeling page</a>) introduced concerns about the ability of malonyl-CoA to freely diffuse into the BMC. Malonyl-CoA is much larger than metabolites which have previously been shown to move through the pore and has significant steric hindrances stemming from the bulky CoA group <div class="ref">[2]<span>C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” Microbiol. Mol. Biol. Rev. MMBR, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.</span></div>. Malonyl-CoA is also utilized in the fatty acid biosynthesis pathway; therefore, our system will be competing with native pathways for the limited molecule <div class="ref">[1]<span>C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.</span></div>. <b>The Manifold system is unable to create significant increases in yield if the availability of malonyl-CoA serves to limit the reaction rate.</b> Thus, we were forced to take a step back and redesign our system to address this new need.
 +
            </div>
 +
              <div class="figureHolder">
 +
              <img src="https://static.igem.org/mediawiki/2020/4/47/T--Virginia--images--resveratrolPathway.svg"/>
 +
              <div>
 +
              <b>Fig 1.</b> Resveratrol biosynthesis pathway shown alongside the competing fatty acid biosynthesis pathway <div class="ref">[1]<span>C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.</span></div>.
 +
              </div>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
           <div class="sectionTitle" id="Section 2">Section 2</div>
+
           <div class="sectionTitle" id="Section 2">Engineering Solutions</div>
 
           <div class="bar"></div>
 
           <div class="bar"></div>
 
           <div class="section">
 
           <div class="section">
 
             <div class="paragraph">
 
             <div class="paragraph">
               The invention consists of a protein shell comprising one or more proteins, one or more nucleic acid scaffolds of which there can be multiple copies, anabolic and/or catabolic enzymes specific to the desired biosynthesis pathway each containing a nucleic acid binding domain, recognition sequences for the utilized nucleic acid binding domains, nucleic acid spacers, and a linkage between the nucleic acid scaffolds and the protein shell. The protein shell (10) can take the form of any closed or open surface that comprises one or more repeating protein units (12). Examples of valid shells include bacterial microcompartments such as the Pdu, Eut, and carboxysome microcompartments, as well as modified, but not necessarily closed, surfaces composed of mutated versions of these microcompartment shell proteins. The nucleic acid scaffolds (18) comprise multiple recognition sequences (22) and spacers (32) and can be made from any form of nucleic acid, including: deoxyribonucleic acid, ribonucleic acid, and synthetic nucleic acids such as xeno nucleic acids and peptide nucleic acids among others. These scaffolds are attached to the protein shell. The pathway enzymes are biological proteins whose exact sequences are dependent on the given use case of the invention, but which all contain a nucleic acid binding domain either internal to their structure, or at their N or C terminus.  
+
               We choose to focus on acetate, a molecule found two steps upstream of malonyl-CoA in the glucose metabolism pathway as shown in Figure 2 <div class="ref">[3]<span>W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.</span></div>. <b>The size of and functional groups present in acetate closely resemble 1,2-propanediol which exhibits free pore diffusion as it is the natural precursor of the reactions which occur in PDU BMCs.</b> This led us to conclude that acetate will be able to diffuse through the pore more readily than malonyl-CoA.
 
             </div>
 
             </div>
 
             <div class="figureHolder">
 
             <div class="figureHolder">
               <img src="https://static.igem.org/mediawiki/2019/3/31/T--NCKU_Tainan--CBMB-Amplification.png"/>
+
               <img src="https://static.igem.org/mediawiki/2020/f/f6/T--Virginia--images--malonylPathway.svg"/>
 
               <div>
 
               <div>
               <b>Fig 1.</b> Figure taken from iGEM Tainan 2019 for demo purposes. Notice how the figure is much longer than it is wide, and two images are coupled together to achive this. Try to do that as well so it looks good.
+
               <b>Fig 2.</b> Malonyl-CoA biosynthesis pathway shown <div class="ref">[3]<span>W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.</span></div>.  
 
               </div>
 
               </div>
 +
            </div>
 +
            <div class="paragraph">
 +
              Based on our understanding of pore structure we felt confident that acetate introduced into the culture media would diffuse into the BMC, but once there it still needs to be converted to malonyl-CoA. This requires the recruitment of the additional enzymes acetyl-CoA carboxylase (ACC) and acetyl-CoA synthetase (ACS) to the lumen of the BMC <div class="ref">[3]<span>W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.</span></div>. <b>Thus, we introduced a second, unique scaffold to our design with different zinc-finger motifs when compared to the original resveratrol scaffold.</b> By introducing ACC and ACS zinc-finger fusion enzymes, in addition to our 4CL and STS zinc-finger fusion enzymes, we were able to design a way to target ACC and ACS to the interior of the BMC at controlled concentrations. <b>The introduction of ACC and ACS to the interior of the BMC allows malonyl-CoA to be recycled within the BMC ensuring that it will always be present in sufficient quantities for the synthesis of resveratrol from p-Coumaric acid.</b>
 
             </div>
 
             </div>
 +
          </div>
 +
          <div class="sectionTitle" id="Section 3">Testing Solutions</div>
 +
          <div class="bar"></div>
 +
          <div class="section">
 
             <div class="paragraph">
 
             <div class="paragraph">
               Additionally, protein linkers are usually present between this nucleic acid binding domain and the enzyme structure to prevent inhibition of enzyme activity. However the exact linker(s) used,  if any, is(are) also dependent on the specific use case of the invention. These pathway enzymes are attached to the nucleic acid scaffolds via their nucleic acid binding domains. The nucleic acid recognition sequences (22) are unique or semi-unique sequences of nucleic acid monomers on the nucleic acid scaffolds to which the utilized nucleic acid binding domains have some degree of molecular complementarity. These nucleic recognition sequences comprise most of the scaffold and mark the locations to which the DNA binding domains of the pathway enzymes attach to the scaffolds. The nucleic acid spacers (32) are relatively short sequences of nucleic acid monomers that are also present on the nucleic acid scaffolds, between the recognition sequences. The linkage between the nucleic acid scaffolds (18) and protein shell (10) provides a means by which the nucleic acid scaffolds are bound to the protein shell through direct or multi-molecule complementarity. This linkage is found between the nucleic acid scaffolds and the protein shell. One example is through the addition of a nucleic acid binding domain (24) to one or more of the shell proteins forming a nucleic acid binding domain, shell protein fusion (14). Like the pathway enzymes, this nucleic acid binding-domain can be either internal to the shell protein structure or at its N or C terminus, where the exact placement depends on the shell protein being utilized. Alternatively, one or more intermediate proteins can be used to adhere the nucleic acid scaffolds to the shell, where the region of the protein interacting with the shell binds the shell via protein-protein complementarity (28) with a given shell protein, and the region of the protein interacting with the nucleic acid scaffold binds another recognition sequence on the nucleic acid scaffold through another nucleic acid binding domain (30). This forms a shell protein binding, nucleic acid domain fusion (26).<br/><br/><br/>
+
               Due to COVID-19 restrictions we were unable to test our designs in between the redesign steps; however, we did include a plan to compare our original and redesigned system in our wet lab planning (for more information see the <a href="https://2020.igem.org/Team:Virginia/Experiments">Experiments page</a>). We will assemble and test the resveratrol production in capabilities of multiple versions of the system, including two with both the <b>resveratrol and the CoA scaffolds in either a 1:1 ratio or a 1:3 ratio</b> and one with <b>just the resveratrol scaffold</b>. By analyzing the resveratrol production capabilities of both our original system and our redesigned system we will be able to determine the most efficient system and determine what harmful effects may arise from including additional enzymes. Thus, we have implemented a somewhat adapted version of the Engineering Design Cycle to fit our current situation.
 
             </div>
 
             </div>
 +
          </div>
 +
          <div class="sectionTitle" id="Section 4">Extending Applications</div>
 +
          <div class="bar"></div>
 +
          <div class="section">
 +
            <div class="paragraph">
 +
              The need to address molecular diffusion will undoubtedly be an issue in other pathways to which the Manifold system is applied. As such an engineering process similar to the one discussed above will have to be performed for each pathway to ensure that all required precursors and coenzymes are present in the reaction space. For many pathways this may be addressed by <b>recruitment of additional enzymes</b> to the BMC as described here. For others a solution may require the <b>use of other BMCs</b> such as EUT BMCs or carboxysomes, and still others will likely require even more <b>inventive solutions</b>. As research into the field of BMCs continues to advance, the understanding of and ability to control selective diffusion across BMCs will extend the set of pathways to which Manifold can be applied.
 +
          </div>
 +
          </div>
 +
          <div class="sectionTitle" id="Section 5">References</div>
 +
          <div class="bar"></div>
 +
          <div class="section">
 +
            <div class="nonParagraph">
 +
              [1] C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” <i>Appl. Environ. Microbiol.</i>, vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.<br/>
 +
              [2] C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” <i>Microbiol. Mol. Biol. Rev. MMBR</i>, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.<br/>
 +
              [3] W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” <i>Metab. Eng.</i>, vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.<br/><br/><br/>
 +
          </div>
 
           </div>
 
           </div>
 
       </div>
 
       </div>
Line 158: Line 186:
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/d4/T--Virginia--sponsors--UVA.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/d4/T--Virginia--sponsors--UVA.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/4/41/T--Virginia--images--neb.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/e/e6/T--Virginia--images--twist.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/4/41/T--Virginia--images--cvillbiohub.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/b/b8/T--Virginia--sponsors--addgene.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/7/75/T--Virginia--sponsors--matlab.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/9/96/T--Virginia--sponsors--Benchling.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/6/69/T--Virginia--sponsors--qiagen.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/f/f5/T--Virginia--sponsors--lucid.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/dc/T--Virginia--sponsors--GenScript.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/dc/T--Virginia--sponsors--GenScript.png"/></div>
 
         </div>
 
         </div>

Latest revision as of 03:31, 28 October 2020

Manifold

Index:
Engineering
Asking New Questions
Manifold introduces many significant improvements to the efficiency and capability of biosynthesis. Bacterial compartmentalization increases metabolic yield by decreasing the available reaction space and controlling metabolite passage. However, this advancement introduces a difficulty derived from the use of bacterial microcompartments for a role outside of their native application. The compartmentalization capabilities, which serve a crucial role in Manifold’s design, are due to the ability of BMCs to serve as selective barriers for metabolite diffusion. While this selective diffusion is crucial to the functionality of Manifold, it also requires all precursors and coenzymes be able to diffuse through the BMC pore and enter the reaction space. This requirement is an integral consideration in our continued development of Manifold and our proof of concept, resveratrol production system.
Our initial design utilized only the two enzymes responsible for resveratrol production,
4-coumarate-CoA ligase (4CL)4CL converts p-Coumaric acid to CoA-ester as the first step in synthesizing resveratrol.
and
stilbene synthase (STS)STS converts CoA-ester to resveratrol to complete the biosynthesis of resveratrol.
, from p-Coumaric as shown in Figure 1. In order for this reaction to occur, malonyl-CoA must be present in the reaction space
[1]C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.
. Thus, our original design required the diffusion of malonyl-CoA through the BMC pore. An investigation of this metabolite in relation to the pore (for more information see the Modeling page) introduced concerns about the ability of malonyl-CoA to freely diffuse into the BMC. Malonyl-CoA is much larger than metabolites which have previously been shown to move through the pore and has significant steric hindrances stemming from the bulky CoA group
[2]C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” Microbiol. Mol. Biol. Rev. MMBR, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.
. Malonyl-CoA is also utilized in the fatty acid biosynthesis pathway; therefore, our system will be competing with native pathways for the limited molecule
[1]C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.
. The Manifold system is unable to create significant increases in yield if the availability of malonyl-CoA serves to limit the reaction rate. Thus, we were forced to take a step back and redesign our system to address this new need.
Fig 1. Resveratrol biosynthesis pathway shown alongside the competing fatty acid biosynthesis pathway
[1]C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.
.
Engineering Solutions
We choose to focus on acetate, a molecule found two steps upstream of malonyl-CoA in the glucose metabolism pathway as shown in Figure 2
[3]W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.
. The size of and functional groups present in acetate closely resemble 1,2-propanediol which exhibits free pore diffusion as it is the natural precursor of the reactions which occur in PDU BMCs. This led us to conclude that acetate will be able to diffuse through the pore more readily than malonyl-CoA.
Fig 2. Malonyl-CoA biosynthesis pathway shown
[3]W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.
.
Based on our understanding of pore structure we felt confident that acetate introduced into the culture media would diffuse into the BMC, but once there it still needs to be converted to malonyl-CoA. This requires the recruitment of the additional enzymes acetyl-CoA carboxylase (ACC) and acetyl-CoA synthetase (ACS) to the lumen of the BMC
[3]W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.
. Thus, we introduced a second, unique scaffold to our design with different zinc-finger motifs when compared to the original resveratrol scaffold. By introducing ACC and ACS zinc-finger fusion enzymes, in addition to our 4CL and STS zinc-finger fusion enzymes, we were able to design a way to target ACC and ACS to the interior of the BMC at controlled concentrations. The introduction of ACC and ACS to the interior of the BMC allows malonyl-CoA to be recycled within the BMC ensuring that it will always be present in sufficient quantities for the synthesis of resveratrol from p-Coumaric acid.
Testing Solutions
Due to COVID-19 restrictions we were unable to test our designs in between the redesign steps; however, we did include a plan to compare our original and redesigned system in our wet lab planning (for more information see the Experiments page). We will assemble and test the resveratrol production in capabilities of multiple versions of the system, including two with both the resveratrol and the CoA scaffolds in either a 1:1 ratio or a 1:3 ratio and one with just the resveratrol scaffold. By analyzing the resveratrol production capabilities of both our original system and our redesigned system we will be able to determine the most efficient system and determine what harmful effects may arise from including additional enzymes. Thus, we have implemented a somewhat adapted version of the Engineering Design Cycle to fit our current situation.
Extending Applications
The need to address molecular diffusion will undoubtedly be an issue in other pathways to which the Manifold system is applied. As such an engineering process similar to the one discussed above will have to be performed for each pathway to ensure that all required precursors and coenzymes are present in the reaction space. For many pathways this may be addressed by recruitment of additional enzymes to the BMC as described here. For others a solution may require the use of other BMCs such as EUT BMCs or carboxysomes, and still others will likely require even more inventive solutions. As research into the field of BMCs continues to advance, the understanding of and ability to control selective diffusion across BMCs will extend the set of pathways to which Manifold can be applied.
References
[1] C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.
[2] C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” Microbiol. Mol. Biol. Rev. MMBR, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.
[3] W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.