Difference between revisions of "Team:Virginia/Papers"

 
(6 intermediate revisions by the same user not shown)
Line 36: Line 36:
 
         <div class="topnav">
 
         <div class="topnav">
 
           <div class="dropdown">
 
           <div class="dropdown">
             <a class="active mainitem" href="#home">HOME</a>
+
             <a class="mainitem" href="https://2020.igem.org/Team:Virginia">HOME</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia">Main</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia">Main</a>
               <a class="hvr-sweep-to-right" href="#abstract">Abstract</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia#abstract">Abstract</a>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 92: Line 92:
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/nucleic_acids">Nucleic Acids</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/nucleic_acids">Nucleic Acids</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Protocols">Protocols</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Protocols">Protocols</a>
              <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/Software">Software</a>
 
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 112: Line 111:
 
       <div class="contentHolder">
 
       <div class="contentHolder">
 
           <div class="genTitle">
 
           <div class="genTitle">
             <div>Sources</div>
+
             <div>   Sources</div>
 
           </div>
 
           </div>
 
           <div id="Section 1">
 
           <div id="Section 1">
Line 118: Line 117:
 
           <div class="section">
 
           <div class="section">
 
             <div class="nonParagraph">
 
             <div class="nonParagraph">
                 [1] A. H. Chen and P. A. Silver, “Designing biological compartmentalization,” Trends Cell Biol., vol. 22, no. 12, pp. 662–670, Dec. 2012, doi: 10.1016/j.tcb.2012.07.002.<br/>
+
                 [1] A. H. Chen and P. A. Silver, “Designing biological compartmentalization,” <i>Trends Cell Biol.</i>, vol. 22, no. 12, pp. 662–670, Dec. 2012, doi: 10.1016/j.tcb.2012.07.002.<br/><br/>
                 [2] A. I. Romero-Pérez, R. M. Lamuela-Raventós, C. Andrés-Lacueva, and M. C. de La Torre-Boronat, “Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content,” J. Agric. Food Chem., vol. 49, no. 1, pp. 210–215, 2001.<br/>
+
                 [2] A. I. Romero-Pérez, R. M. Lamuela-Raventós, C. Andrés-Lacueva, and M. C. de La Torre-Boronat, “Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content,” J. Agric. <i>Food Chem.</i>, vol. 49, no. 1, pp. 210–215, 2001.<br/><br/>
                 [3] C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” Microbiol. Mol. Biol. Rev. MMBR, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.<br/>
+
                 [3] C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” <i>Microbiol. Mol. Biol. Rev. MMBR</i>, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.<br/><br/>
                 [4] C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.<br/>
+
                 [4] C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” <i>Appl. Environ. Microbiol.</i>, vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.<br/><br/>
                 [5] C. M. Insights, “Resveratrol Market to Surpass US$ 159.1 Million by 2026 – Coherent Market Insights,” GlobeNewswire News Room, 21-Nov-2018. [Online]. Available: https://www.globenewswire.com/news-release/2018/11/21/1655234/0/en/Resveratrol-Market-to-Surpass-US-159-1-Million-by-2026-Coherent-Market-Insights.html. [Accessed: 27-Oct-2020]<br/>
+
                 [5] C. M. Insights, “Resveratrol Market to Surpass US$ 159.1 Million by 2026 – Coherent Market Insights,” <i>GlobeNewswire News Room</i>, 21-Nov-2018. [Online]. Available: https://www.globenewswire.com/news-release/2018/11/21/1655234/0/en/Resveratrol-Market-to-Surpass-US-159-1-Million-by-2026-Coherent-Market-Insights.html. [Accessed: 27-Oct-2020]<br/><br/>
                 [6] Crowley et al., “Structural Insight into the Mechanisms of Transport across the Salmonella Enterica Pdu Microcompartment Shell.” 2010.<br/>
+
                 [6] Crowley et al., “Structural Insight into the Mechanisms of Transport across the Salmonella Enterica Pdu Microcompartment Shell.” 2010.<br/><br/>
                 [7] D.-G. Wang, W.-Y. Liu, and G.-T. Chen, “A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum,” Journal of Pharmaceutical Analysis, 10-Dec-2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095177912001426. [Accessed: 27-Oct-2020]<br/>
+
                 [7] D.-G. Wang, W.-Y. Liu, and G.-T. Chen, “A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum,” <i>Journal of Pharmaceutical Analysis</i>, 10-Dec-2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095177912001426. [Accessed: 27-Oct-2020]<br/><br/>
                 [8] D.-K. Ro et al., “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” Nature, vol. 440, no. 7086, pp. 940–943, Apr. 2006, doi: 10.1038/nature04640.<br/>
+
                 [8] D.-K. Ro et al., “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” <i>Nature</i>, vol. 440, no. 7086, pp. 940–943, Apr. 2006, doi: 10.1038/nature04640.<br/><br/>
                 [9] Fan and Bobik, “The N-Terminal Region of the Medium Subunit (PduD) Packages Adenosylcobalamin-Dependent Diol Dehydratase (PduCDE) into the Pdu Microcompartment.”2011.<br/>
+
                 [9] Fan and Bobik, “The N-Terminal Region of the Medium Subunit (PduD) Packages Adenosylcobalamin-Dependent Diol Dehydratase (PduCDE) into the Pdu Microcompartment.”2011.<br/><br/>
                 [10] Garmann, Goldfain, and Manoharan, “Measurements of the Self-Assembly Kinetics of Individual Viral Capsids around Their RNA Genome.” 2009.<br/>
+
                 [10] Garmann, Goldfain, and Manoharan, “Measurements of the Self-Assembly Kinetics of Individual Viral Capsids around Their RNA Genome.” 2009.<br/><br/>
                 [11] Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact. 2010 May 30 9: 42. doi: 10.1186/1475-2859-9-42. p.4 left column 5th paragraph<br/>
+
                 [11] Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P. "High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor." <i>Microb Cell Fact.</i> 2010 May 30 9: 42. doi: 10.1186/1475-2859-9-42. p.4 left column 5th paragraph<br/><br/>
                 [12] Innovations transforming economies and O. Lives, “The Bio Revolution,” Mckinsey.com. [Online]. Available: https://www.mckinsey.com/~/media/McKinsey/Industries/Pharmaceuticals%20and%20Medical%20Products/Our%20Insights/The%20Bio %20Revolution%20Innovations%20transforming%20economies%20societies%20and%20our%20lives/May_2020_MGI_Bio_Revolution_Report.pdf. [Accessed: 27-Oct-2020].<br/>
+
                 [12] Innovations transforming economies and O. Lives, “The Bio Revolution,” Mckinsey.com. [Online]. Available: https://www.mckinsey.com/~/media/McKinsey/Industries/Pharmaceuticals%20and%20Medical%20Products/Our%20Insights/The%20Bio %20Revolution%20Innovations%20transforming%20economies%20societies%20and%20our%20lives/May_2020_MGI_Bio_Revolution
                 [13] J. B. Parsons et al., “Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement,” Mol. Cell, vol. 38, no. 2, pp. 305–315, Apr. 2010, doi: 10.1016/j.molcel.2010.04.008. [9] T. O. Yeates, J. Jorda, and T. A. Bobik, “The Shells of BMC-Type Microcompartment Organelles in Bacteria,” J. Mol. Microbiol. Biotechnol., vol. 23, no. 4–5, pp. 290–299, 2013, doi: 10.1159/000351347.<br/>
+
                _Report.pdf. [Accessed: 27-Oct-2020].<br/><br/>
                 [14] J. Elbaz, P. Yin, and C. A. Voigt, “Genetic encoding of DNA nanostructures and their self-assembly in living bacteria,” Nat. Commun., vol. 7, no. 1, p. 11179, Apr. 2016, doi: 10.1038/ncomms11179.<br/>
+
                 [13] J. B. Parsons et al., “Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement,” <i>Mol. Cell</i>, vol. 38, no. 2, pp. 305–315, Apr. 2010, doi: 10.1016/j.molcel.2010.04.008. [9] T. O. Yeates, J. Jorda, and T. A. Bobik, “The Shells of BMC-Type Microcompartment Organelles in Bacteria,” <i>J. Mol. Microbiol. Biotechnol.</i>, vol. 23, no. 4–5, pp. 290–299, 2013, doi: 10.1159/000351347.<br/><br/>
                 [15] Jorda et al., “Exploring Bacterial Organelle Interactomes.” 2015.<br/>
+
                 [14] J. Elbaz, P. Yin, and C. A. Voigt, “Genetic encoding of DNA nanostructures and their self-assembly in living bacteria,” <i>Nat. Commun.</i>, vol. 7, no. 1, p. 11179, Apr. 2016, doi: 10.1038/ncomms11179.<br/><br/>
                 [16] J. Rajawat and G. Jhingan, Chapter 1 - Mass spectroscopy, Data Processing Handbook for Complex Biological Data Sources, pp. 1-20, 2019.<br/>
+
                 [15] Jorda et al., “Exploring Bacterial Organelle Interactomes.” 2015.<br/><br/>
                 [17] Juodeikis et al., “Effect of Metabolosome Encapsulation Peptides on Enzyme Activity, Coaggregation, Incorporation, and Bacterial Microcompartment Formation.” 2020.<br/>
+
                 [16] J. Rajawat and G. Jhingan, Chapter 1 - <i>Mass spectroscopy, Data Processing Handbook for Complex Biological Data Sources</i>, pp. 1-20, 2019.<br/><br/>
                 [18] Kennedy et al., “Apparent Size and Morphology of Bacterial Microcompartments Varies with Technique.” 2020.<br/>
+
                 [17] Juodeikis et al., “Effect of Metabolosome Encapsulation Peptides on Enzyme Activity, Coaggregation, Incorporation, and Bacterial Microcompartment Formation.” 2020.<br/><br/>
                 [19] M. Gearing, Plasmids 101: Golden Gate Cloning,addgene blog share science. [Online]. Available: https://blog.addgene.org/plasmids-101-golden-gate-cloning. [Accessed: 26-Oct-2020].<br/>
+
                 [18] Kennedy et al., “Apparent Size and Morphology of Bacterial Microcompartments Varies with Technique.” 2020.<br/><br/>
                 [20] M. Katz, H. P. Smits, J. Forster, and J. B. NIELSEN, “Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof,” US9404129B2, Aug. 02, 2016.<br/>
+
                 [19] M. Gearing, Plasmids 101: Golden Gate Cloning,addgene blog share science. [Online]. Available: https://blog.addgene.org/plasmids-101-golden-gate-cloning. [Accessed: 26-Oct-2020].<br/><br/>
                 [21] M. Portincaso, A. Gourévitch, S. Gross-Selbeck, and T. Reichert, “How Deep Tech Can Help Shape the New Reality,” BCG Global, 21-Jul-2020. [Online]. Available: https://www.bcg.com/publications/2020/how-deep-tech-can-shape-post-covid-reality. [Accessed: 27-Oct-2020]<br/>
+
                 [20] M. Katz, H. P. Smits, J. Forster, and J. B. NIELSEN, “Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof,” US9404129B2, Aug. 02, 2016.<br/><br/>
                 [22] M. Samejima and A. Attorney, “Efforts Towards Open Innovation,” Nedo.go.jp. [Online]. Available: https://www.nedo.go.jp/content/100889935.pdf. [Accessed: 27-Oct-2020].<br/>
+
                 [21] M. Portincaso, A. Gourévitch, S. Gross-Selbeck, and T. Reichert, “How Deep Tech Can Help Shape the New Reality,” <i>BCG Global</i>, 21-Jul-2020. [Online]. Available: https://www.bcg.com/publications/2020/how-deep-tech-can-shape-post-covid-reality. [Accessed: 27-Oct-2020]<br/><br/>
                 [23] Nature News. [Online]. Available: https://www.nature.com/articles/d42473-020-00220-x. [Accessed: 27-Oct-2020].<br/>
+
                 [22] M. Samejima and A. Attorney, “Efforts Towards Open Innovation,” Nedo.go.jp. [Online]. Available: https://www.nedo.go.jp/content/100889935.pdf. [Accessed: 27-Oct-2020].<br/><br/>
                 [24] Parsons et al., “Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement.” 2010.<br/>
+
                 [23] Nature News. [Online]. Available: https://www.nature.com/articles/d42473-020-00220-x. [Accessed: 27-Oct-2020].<br/><br/>
                 [25] Q. Wang et al., “Peanut by-products utilization technology,” in Peanuts: Processing Technology and Product Development, Elsevier, 2016, pp. 211–325.<br/>
+
                 [24] Parsons et al., “Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement.” 2010.<br/><br/>
                 [26] “Resveratrol Market size 2020 industry share, demand, top players, industry size, future growth by 2026,” MarketWatch, 19-Oct-2020. [Online]. Available: https://www.marketwatch.com/press-release/resveratrol-market-size-2020-industry-share-demand-top-players-industry-size-future-growth-by-2026-2020-10-18. [Accessed: 27-Oct-2020].<br/>
+
                 [25] Q. Wang et al., “Peanut by-products utilization technology,” in <i>Peanuts: Processing Technology and Product Development</i>, Elsevier, 2016, pp. 211–325.<br/><br/>
                 [27] R. J. Conrado et al., “DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency,” Nucleic Acids Res., vol. 40, no. 4, pp. 1879–1889, Feb. 2012, doi: 10.1093/nar/gkr888.<br/>
+
                 [26] “Resveratrol Market size 2020 industry share, demand, top players, industry size, future growth by 2026,” MarketWatch, 19-Oct-2020. [Online]. Available: https://www.marketwatch.com/press-release/resveratrol-market-size-2020-industry-share-demand-top-players-industry-size-future-growth-by-2026-2020-10-18. [Accessed: 27-Oct-2020].<br/><br/>
                 [28] Salis, Mirsky, and Voigt, “Automated Design of Synthetic Ribosome Binding Sites to Control Protein Expression.” 2009.<br/>
+
                 [27] R. J. Conrado et al., “DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency,” <i>Nucleic Acids Res.</i>, vol. 40, no. 4, pp. 1879–1889, Feb. 2012, doi: 10.1093/nar/gkr888.<br/><br/>
                 [29] S. D. Axen, O. Erbilgin, and C. A. Kerfeld, “A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method,” PLoS Comput. Biol., vol. 10, no. 10, Oct. 2014, doi: 10.1371/journal.pcbi.1003898.<br/>
+
                 [28] Salis, Mirsky, and Voigt, “Automated Design of Synthetic Ribosome Binding Sites to Control Protein Expression.” 2009.<br/><br/>
                 [30] Synbiobeta.com. [Online]. Available: https://synbiobeta.com/wp-content/uploads/2018/11/Synbiobeta_Report_8.22.18_Chemicals_v3.pdf. [Accessed: 27-Oct-2020].<br/>
+
                 [29] S. D. Axen, O. Erbilgin, and C. A. Kerfeld, “A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method,” <i>PLoS Comput. Biol.</i>, vol. 10, no. 10, Oct. 2014, doi: 10.1371/journal.pcbi.1003898.<br/><br/>
                 [31] “Synthetic biology is shaking up these 5 industries-Some of them might surprise you - SynBioBeta,” Synbiobeta.com, 11-Feb-2020. [Online]. Available: https://synbiobeta.com/synthetic-biology-is-shaking-up-these-5-industries-some-of-them-might-surprise-you/. [Accessed: 27-Oct-2020].<br/>
+
                 [30] Synbiobeta.com. [Online]. Available: https://synbiobeta.com/wp-content/uploads/2018/11/Synbiobeta_Report_8.22.18_Chemicals_v3.pdf. [Accessed: 27-Oct-2020].<br/><br/>
                 [32] “Team:British Columbia/project/vanillin - 2013.Igem.Org,” Igem.org. [Online]. Available: https://2013.igem.org/Team:British_Columbia/Project/Vanillin. [Accessed: 27-Oct-2020].<br/>
+
                 [31] “Synthetic biology is shaking up these 5 industries-Some of them might surprise you - SynBioBeta,” Synbiobeta.com, 11-Feb-2020. [Online]. Available: https://synbiobeta.com/synthetic-biology-is-shaking-up-these-5-industries-some-of-them-might-surprise-you/. [Accessed: 27-Oct-2020].<br/><br/>
                 [33] T. O. Yeates, C. S. Crowley, and S. Tanaka, “Bacterial Microcompartment Organelles: Protein Shell Structure and Evolution,” Annu. Rev. Biophys., vol. 39, pp. 185–205, Jun. 2010, doi: 10.1146/annurev.biophys.093008.131418.<br/>
+
                 [32] “Team:British Columbia/project/vanillin - 2013.Igem.Org,” Igem.org. [Online]. Available: https://2013.igem.org/Team:British_Columbia/Project/Vanillin. [Accessed: 27-Oct-2020].<br/><br/>
                 [34] Toyeates, English: Stylized view of the carboxysome and related bacterial structures such as the propanediol utilization (Pdu) and ethanolamine utilization (Eut) microcompartments. Distinct hexameric BMC shell proteins carrying out different functions in the shell are shown in different shades of blue. Pentameric vertex proteins are shown in magenta. Encapsulated enzymes are shown in green, organized in layers. [Image: T. Yeates]. 2013.<br/>
+
                 [33] T. O. Yeates, C. S. Crowley, and S. Tanaka, “Bacterial Microcompartment Organelles: Protein Shell Structure and Evolution,” <i>Annu. Rev. Biophys.</i>, vol. 39, pp. 185–205, Jun. 2010, doi: 10.1146/annurev.biophys.093008.131418.<br/><br/>
                 [35] Waters, Beginners Guide to Liquid Chromatography. [Online]. Available: https://www.waters.com/waters/en_US/HPLC---High-Performance-Liquid-Chromatography-Explained/nav.htm?cid=10048919. [Accessed: 26-Oct-2020].<br/>
+
                 [34] Toyeates, English: Stylized view of the carboxysome and related bacterial structures such as the propanediol utilization (Pdu) and ethanolamine utilization (Eut) microcompartments. Distinct hexameric BMC shell proteins carrying out different functions in the shell are shown in different shades of blue. Pentameric vertex proteins are shown in magenta. Encapsulated enzymes are shown in green, organized in layers. [Image: T. Yeates]. 2013.<br/><br/>
                 [36] W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.<br/>
+
                 [35] Waters, <i>Beginners Guide to Liquid Chromatography</i>. [Online]. Available: https://www.waters.com/waters/en_US/HPLC---High-Performance-Liquid-Chromatography-Explained/nav.htm?cid=10048919. [Accessed: 26-Oct-2020].<br/><br/>
                 [37] Yang et al., “Decoding the Stoichiometric Composition and Organisation of Bacterial Metabolosomes.” 2020.<br/>
+
                 [36] W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” <i>Metab. Eng.</i>, vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.<br/><br/>
                 [38] Y. Tsai et al., “Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome,” PLoS Biol., vol. 5, no. 6, Jun. 2007, doi: 10.1371/journal.pbio.0050144.<br/><br/><br/>
+
                 [37] Yang et al., “Decoding the Stoichiometric Composition and Organisation of Bacterial Metabolosomes.” 2020.<br/><br/>
 +
                 [38] Y. Tsai et al., “Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome,” <i>PLoS Biol.</i>, vol. 5, no. 6, Jun. 2007, doi: 10.1371/journal.pbio.0050144.<br/><br/><br/>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 173: Line 173:
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/d4/T--Virginia--sponsors--UVA.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/d4/T--Virginia--sponsors--UVA.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/4/41/T--Virginia--images--neb.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/e/e6/T--Virginia--images--twist.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/4/41/T--Virginia--images--cvillbiohub.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/b/b8/T--Virginia--sponsors--addgene.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/7/75/T--Virginia--sponsors--matlab.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/9/96/T--Virginia--sponsors--Benchling.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/6/69/T--Virginia--sponsors--qiagen.png"/></div>
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/c/c1/T--Virginia--sponsors--IDT.png"/></div>
+
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/f/f5/T--Virginia--sponsors--lucid.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/dc/T--Virginia--sponsors--GenScript.png"/></div>
 
           <div class="sponsoritem hexagon"><img src="https://static.igem.org/mediawiki/2020/d/dc/T--Virginia--sponsors--GenScript.png"/></div>
 
         </div>
 
         </div>

Latest revision as of 03:31, 28 October 2020

Manifold

Sources
[1] A. H. Chen and P. A. Silver, “Designing biological compartmentalization,” Trends Cell Biol., vol. 22, no. 12, pp. 662–670, Dec. 2012, doi: 10.1016/j.tcb.2012.07.002.

[2] A. I. Romero-Pérez, R. M. Lamuela-Raventós, C. Andrés-Lacueva, and M. C. de La Torre-Boronat, “Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content,” J. Agric. Food Chem., vol. 49, no. 1, pp. 210–215, 2001.

[3] C. Chowdhury, S. Sinha, S. Chun, T. O. Yeates, and T. A. Bobik, “Diverse Bacterial Microcompartment Organelles,” Microbiol. Mol. Biol. Rev. MMBR, vol. 78, no. 3, pp. 438–468, Sep. 2014, doi: 10.1128/MMBR.00009-14.

[4] C. Lim, Z. Fowler, T. Hueller, S. Schaffer, and M. Koffas, “High-Yield Resveratrol Production in Engineered Escherichia coli,” Appl. Environ. Microbiol., vol. 77, pp. 3451–60, Mar. 2011, doi: 10.1128/AEM.02186-10.

[5] C. M. Insights, “Resveratrol Market to Surpass US$ 159.1 Million by 2026 – Coherent Market Insights,” GlobeNewswire News Room, 21-Nov-2018. [Online]. Available: https://www.globenewswire.com/news-release/2018/11/21/1655234/0/en/Resveratrol-Market-to-Surpass-US-159-1-Million-by-2026-Coherent-Market-Insights.html. [Accessed: 27-Oct-2020]

[6] Crowley et al., “Structural Insight into the Mechanisms of Transport across the Salmonella Enterica Pdu Microcompartment Shell.” 2010.

[7] D.-G. Wang, W.-Y. Liu, and G.-T. Chen, “A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum,” Journal of Pharmaceutical Analysis, 10-Dec-2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095177912001426. [Accessed: 27-Oct-2020]

[8] D.-K. Ro et al., “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” Nature, vol. 440, no. 7086, pp. 940–943, Apr. 2006, doi: 10.1038/nature04640.

[9] Fan and Bobik, “The N-Terminal Region of the Medium Subunit (PduD) Packages Adenosylcobalamin-Dependent Diol Dehydratase (PduCDE) into the Pdu Microcompartment.”2011.

[10] Garmann, Goldfain, and Manoharan, “Measurements of the Self-Assembly Kinetics of Individual Viral Capsids around Their RNA Genome.” 2009.

[11] Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P. "High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor." Microb Cell Fact. 2010 May 30 9: 42. doi: 10.1186/1475-2859-9-42. p.4 left column 5th paragraph

[12] Innovations transforming economies and O. Lives, “The Bio Revolution,” Mckinsey.com. [Online]. Available: https://www.mckinsey.com/~/media/McKinsey/Industries/Pharmaceuticals%20and%20Medical%20Products/Our%20Insights/The%20Bio %20Revolution%20Innovations%20transforming%20economies%20societies%20and%20our%20lives/May_2020_MGI_Bio_Revolution _Report.pdf. [Accessed: 27-Oct-2020].

[13] J. B. Parsons et al., “Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement,” Mol. Cell, vol. 38, no. 2, pp. 305–315, Apr. 2010, doi: 10.1016/j.molcel.2010.04.008. [9] T. O. Yeates, J. Jorda, and T. A. Bobik, “The Shells of BMC-Type Microcompartment Organelles in Bacteria,” J. Mol. Microbiol. Biotechnol., vol. 23, no. 4–5, pp. 290–299, 2013, doi: 10.1159/000351347.

[14] J. Elbaz, P. Yin, and C. A. Voigt, “Genetic encoding of DNA nanostructures and their self-assembly in living bacteria,” Nat. Commun., vol. 7, no. 1, p. 11179, Apr. 2016, doi: 10.1038/ncomms11179.

[15] Jorda et al., “Exploring Bacterial Organelle Interactomes.” 2015.

[16] J. Rajawat and G. Jhingan, Chapter 1 - Mass spectroscopy, Data Processing Handbook for Complex Biological Data Sources, pp. 1-20, 2019.

[17] Juodeikis et al., “Effect of Metabolosome Encapsulation Peptides on Enzyme Activity, Coaggregation, Incorporation, and Bacterial Microcompartment Formation.” 2020.

[18] Kennedy et al., “Apparent Size and Morphology of Bacterial Microcompartments Varies with Technique.” 2020.

[19] M. Gearing, Plasmids 101: Golden Gate Cloning,addgene blog share science. [Online]. Available: https://blog.addgene.org/plasmids-101-golden-gate-cloning. [Accessed: 26-Oct-2020].

[20] M. Katz, H. P. Smits, J. Forster, and J. B. NIELSEN, “Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof,” US9404129B2, Aug. 02, 2016.

[21] M. Portincaso, A. Gourévitch, S. Gross-Selbeck, and T. Reichert, “How Deep Tech Can Help Shape the New Reality,” BCG Global, 21-Jul-2020. [Online]. Available: https://www.bcg.com/publications/2020/how-deep-tech-can-shape-post-covid-reality. [Accessed: 27-Oct-2020]

[22] M. Samejima and A. Attorney, “Efforts Towards Open Innovation,” Nedo.go.jp. [Online]. Available: https://www.nedo.go.jp/content/100889935.pdf. [Accessed: 27-Oct-2020].

[23] Nature News. [Online]. Available: https://www.nature.com/articles/d42473-020-00220-x. [Accessed: 27-Oct-2020].

[24] Parsons et al., “Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement.” 2010.

[25] Q. Wang et al., “Peanut by-products utilization technology,” in Peanuts: Processing Technology and Product Development, Elsevier, 2016, pp. 211–325.

[26] “Resveratrol Market size 2020 industry share, demand, top players, industry size, future growth by 2026,” MarketWatch, 19-Oct-2020. [Online]. Available: https://www.marketwatch.com/press-release/resveratrol-market-size-2020-industry-share-demand-top-players-industry-size-future-growth-by-2026-2020-10-18. [Accessed: 27-Oct-2020].

[27] R. J. Conrado et al., “DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency,” Nucleic Acids Res., vol. 40, no. 4, pp. 1879–1889, Feb. 2012, doi: 10.1093/nar/gkr888.

[28] Salis, Mirsky, and Voigt, “Automated Design of Synthetic Ribosome Binding Sites to Control Protein Expression.” 2009.

[29] S. D. Axen, O. Erbilgin, and C. A. Kerfeld, “A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method,” PLoS Comput. Biol., vol. 10, no. 10, Oct. 2014, doi: 10.1371/journal.pcbi.1003898.

[30] Synbiobeta.com. [Online]. Available: https://synbiobeta.com/wp-content/uploads/2018/11/Synbiobeta_Report_8.22.18_Chemicals_v3.pdf. [Accessed: 27-Oct-2020].

[31] “Synthetic biology is shaking up these 5 industries-Some of them might surprise you - SynBioBeta,” Synbiobeta.com, 11-Feb-2020. [Online]. Available: https://synbiobeta.com/synthetic-biology-is-shaking-up-these-5-industries-some-of-them-might-surprise-you/. [Accessed: 27-Oct-2020].

[32] “Team:British Columbia/project/vanillin - 2013.Igem.Org,” Igem.org. [Online]. Available: https://2013.igem.org/Team:British_Columbia/Project/Vanillin. [Accessed: 27-Oct-2020].

[33] T. O. Yeates, C. S. Crowley, and S. Tanaka, “Bacterial Microcompartment Organelles: Protein Shell Structure and Evolution,” Annu. Rev. Biophys., vol. 39, pp. 185–205, Jun. 2010, doi: 10.1146/annurev.biophys.093008.131418.

[34] Toyeates, English: Stylized view of the carboxysome and related bacterial structures such as the propanediol utilization (Pdu) and ethanolamine utilization (Eut) microcompartments. Distinct hexameric BMC shell proteins carrying out different functions in the shell are shown in different shades of blue. Pentameric vertex proteins are shown in magenta. Encapsulated enzymes are shown in green, organized in layers. [Image: T. Yeates]. 2013.

[35] Waters, Beginners Guide to Liquid Chromatography. [Online]. Available: https://www.waters.com/waters/en_US/HPLC---High-Performance-Liquid-Chromatography-Explained/nav.htm?cid=10048919. [Accessed: 26-Oct-2020].

[36] W. Zha, S. B. Rubin-Pitel, Z. Shao, and H. Zhao, “Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering,” Metab. Eng., vol. 11, no. 3, pp. 192–198, May 2009, doi: 10.1016/j.ymben.2009.01.005.

[37] Yang et al., “Decoding the Stoichiometric Composition and Organisation of Bacterial Metabolosomes.” 2020.

[38] Y. Tsai et al., “Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome,” PLoS Biol., vol. 5, no. 6, Jun. 2007, doi: 10.1371/journal.pbio.0050144.