Difference between revisions of "Team:IIT Roorkee/ML Results"

(Created page with "<!DOCTYPE html> <html lang="en"><head> <meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1, shrink-to-fit=no" name="viewport"/> <meta content="Pyo...")
 
 
(3 intermediate revisions by the same user not shown)
Line 118: Line 118:
 
     <p class="text-center font-size-24">
 
     <p class="text-center font-size-24">
 
     </p><h1 class="banner-h1">Machine Learning</h1>
 
     </p><h1 class="banner-h1">Machine Learning</h1>
     <h2 class="banner-h2">Results</h2>
+
     <h2 class="banner-h2">Results</h2><br/>
  
 
     <div class="banner-overlay"></div>
 
     <div class="banner-overlay"></div>
Line 135: Line 135:
  
 
       <p class="wiki-p">
 
       <p class="wiki-p">
         We have utilized a machine learning algorithm over the strain-gene/allele dataset of A. <em>baumannii</em>
+
         We have utilized a machine learning algorithm over the strain-gene/allele dataset of <em>A. baumannii</em>
 
         available from
 
         available from
         the PATRIC database that can predict the resistance phenotype of strains. In nutshell, we have used the presence
+
         the <a class="wiki-a" href="https://www.patricbrc.org" target="_blank">PATRIC</a> database that can predict the resistance phenotype of strains. In nutshell, we have used the presence
 
         or absence of particular genes or alleles as features in predicting the phenotype of strain. We have utilized
 
         or absence of particular genes or alleles as features in predicting the phenotype of strain. We have utilized
         the data of 1360 A. <em>baumannii</em> strains along with 10 different antibiotics.
+
         the data of 1360 <em>A. baumannii</em> strains for 10 different antibiotics.
 
       </p>
 
       </p>
 +
      <br/><br/><br/>
  
 
       <!--- <Graph representing the distribution of strains></Graph> -->
 
       <!--- <Graph representing the distribution of strains></Graph> -->
 
       <div class="wiki-graphic">
 
       <div class="wiki-graphic">
         <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/3/3a/T--IIT_Roorkee--images--images--ML_Results_table_strains.png"/>
+
         <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/5/57/T--IIT_Roorkee--Poster_images--images--ML_Results_table_strains.png"/>
       </div>
+
       </div><br/><br/>
 
       <div class="wiki-graphic">
 
       <div class="wiki-graphic">
 
         <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/1/1b/T--IIT_Roorkee--images--images--ML_Results_distribution_strains.png"/>
 
         <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/1/1b/T--IIT_Roorkee--images--images--ML_Results_distribution_strains.png"/>
       </div>
+
       </div><br/><br/>
 
       <p class="wiki-p">
 
       <p class="wiki-p">
 
         The results of machine learning can be summarized in the following two points
 
         The results of machine learning can be summarized in the following two points
 
       </p><ol class="wiki-ol">
 
       </p><ol class="wiki-ol">
         <li>Detection of genes conferring antibiotic resistance</li>
+
         <li>Detection of Genes conferring Antibiotic resistance</li>
         <li>Analysis of the effect of mutations on antibiotic resistance</li>
+
         <li>Correlation and Mutational analysis of gene-gene pair</li>
 
       </ol>
 
       </ol>
 
       <p></p>
 
       <p></p>
 +
 +
      <br/>
 +
     
 
       <h2 class="wiki-h wiki-h2 wiki-section-start" id="wiki_section_1">
 
       <h2 class="wiki-h wiki-h2 wiki-section-start" id="wiki_section_1">
 +
 
         Detection of Genes conferring Antibiotic resistance
 
         Detection of Genes conferring Antibiotic resistance
       </h2>
+
       </h2><br/>
  
 
       <p class="wiki-p">
 
       <p class="wiki-p">
 
         The machine-learning algorithm has helped in the identification of genes that are either specific to the
 
         The machine-learning algorithm has helped in the identification of genes that are either specific to the
         mechanism of the particular antibiotic or involved in the novel pathway or target. There are few genes that are
+
         mechanism of the particular antibiotic or involved in the novel pathway/target. There are few genes that are
         involved in basic cellular processes that strongly relate to the survival and growth of A. <em>baumannii</em>.
+
         involved in basic cellular processes that strongly relate to the survival and growth of <em> A. baumannii </em>.
 
         The genes
 
         The genes
 
         corresponding to the particular antibiotic are listed below.
 
         corresponding to the particular antibiotic are listed below.
Line 178: Line 183:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <!--table1-->
+
     
         <h3 class="wiki-h wiki-h3">esiB (Ciprofloxacin and Levofloxacin)</h3>
+
 
 +
 
 +
 
 +
 
 +
 
 +
         <table class="table table-hover table-bordered side-wrapped-item">
 +
          <thead class="thead-dark">
 +
            <tr>
 +
              <th scope="col">Genes</th>
 +
              <th scope="col">Antibiotic</th>
 +
              <th scope="col">Gene Ontology<br/> Annotations</th>
 +
              <th scope="col">Mechanism of Action</th>
 +
              <th scope="col">References</th>
 +
            </tr>
 +
          </thead>
 +
          <tbody>
 +
            <tr>
 +
              <td><i>esiB</i></td>
 +
              <td>Ciprofloxacin<br/>
 +
              Levofloxacin
 +
              </td>
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=A0A0H2VDN9" target="_blank">GO_esiB</a></td>
 +
              <td>Secretory immunoglobulin <br/>A-binding protein</td>
 +
              <td><a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/23882011/" target="_blank">Ref1_esiB</a></td>
 +
            </tr>
 +
            <tr>
 +
              <td><i>aroP</i></td>
 +
              <td>Ciprofloxacin<br/>
 +
              Levofloxacin
 +
              </td>
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P15993" target="_blank">GO_aroP</a></td>
 +
              <td>Aromatic amino acid <br/>transport protein</td>
 +
              <td>-</td>
 +
            </tr>
 +
            <tr>
 +
              <td><i>tnsB</i></td>
 +
              <td>Ciprofloxacin</td>
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P13989" target="_blank">GO_tnsB</a></td>
 +
              <td>Transposon Tn7 transposition protein</td>
 +
              <td><a class="wiki-a" href="https://www.sciencedirect.com/science/article/pii/S1517838216305330" target="_blank">Ref1_tnsB</a><br/><a class="wiki-a" href="https://academic.oup.com/biohorizons/article/3/1/40/228211" target="_blank">Ref2_tnsB</a>
 +
              </td>
 +
            </tr>
 +
            <tr>
 +
              <td><i>xerC</i></td>
 +
              <td>Ciprofloxacin</td>
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0A8P6" target="_blank">GO_xerC</a></td>
 +
              <td>Tyrosine recombinase</td>
 +
              <td><a class="wiki-a" href="https://www.mdpi.com/2079-6382/9/7/405" target="_blank">Ref1_xerC</a><br/> <a class="wiki-a" href="https://aac.asm.org/content/54/6/2724" target="_blank">Ref2_xerC</a></td>
 +
            </tr>
 +
            <tr>
 +
              <td><i>asnC</i></td>
 +
              <td>Levofloxacin</td>
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0ACI6" target="_blank">GO_asnC</a></td>
 +
              <td>Regulatory protein, AsnC</td>
 +
              <td><a class="wiki-a" href="https://mbio.asm.org/content/6/6/e01660-15" target="_blank">Ref1_asnC</a></td>
 +
            </tr>
 +
            <tr>
 +
              <td><i>puuP</i></td>
 +
              <td>Levofloxacin</td>
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P76037" target="_blank">GO_puuP</a></td>
 +
              <td>Putrescine importer</td>
 +
              <td><a class="wiki-a" href="https://link.springer.com/article/10.1007/s00726-013-1517-x" target="_blank">Ref1_puuP</a><br/> <a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731653/" target="_blank">Ref2_puuP</a></td>
 +
            </tr>           
 +
          </tbody>
 +
         </table>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
        <br/><br/><h4 class="wiki-h wiki-h4"><i><b>esiB</b></i> (Ciprofloxacin and Levofloxacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           esiB encodes for Secretory immunoglobulin A-binding protein (UP_esiB).
+
           <i>esiB </i>encodes for Secretory immunoglobulin A-binding protein (<a class="wiki-a" href="https://www.uniprot.org/uniprot/A0A0H2VDN9" target="_blank">UP_esiB</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: IgA binding and Metal ion binding
+
           <b>GO Molecular function</b>: IgA binding and Metal ion binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Negative regulation of immune response and neutrophil activation, and pathogenesis
+
           <b>GO Biological function</b>: Negative regulation of immune response and neutrophil activation, and pathogenesis
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_esiB
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://2020.igem.org/Team:IIT_Roorkee/ML_Results/: https:/www.ebi.ac.uk/QuickGO/annotations?geneProductId=A0A0H2VDN9" target="_blank">GO_esiB</a>
 
           <br/><br/>
 
           <br/><br/>
           According to the study of Pastorello et al. (Ref1_esiB), they concluded that esiB helps in secretion of the
+
           According to the study of Pastorello <i>et al.</i> (<a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/23882011/" target="_blank">Ref1_esiB</a>), <i>esiB </i>helps in secretion of the
 
           protein which binds with immunoglobulins in the blood or antibodies helping bacteria escape from neutrophil
 
           protein which binds with immunoglobulins in the blood or antibodies helping bacteria escape from neutrophil
 
           (cell eating bacteria). The neutrophil is the most common White Blood Cells (WBC) in the human body, so these
 
           (cell eating bacteria). The neutrophil is the most common White Blood Cells (WBC) in the human body, so these
 
           proteins help the bacterial pathogen in escaping the immune system pathway in the patients of Urinary Tract
 
           proteins help the bacterial pathogen in escaping the immune system pathway in the patients of Urinary Tract
           Infections. The study also concluded that esiB is preferentially associated with extraintestinal strains,
+
           Infections. The study also concluded that <i>esiB </i>is preferentially associated with extraintestinal strains,
           while the gene is rarely found in either intestinal or nonpathogenic strains.
+
           while the gene is rarely found in either intestinal or nonpathogenic strains of <i>E. coli</i>.
 
           <br/><br/>
 
           <br/><br/>
           Importance: The presence and importance of this gene in the case of patients with Urinary Tract Infection (one
+
           <b>Importance:</b> The presence and importance of this gene in the case of patients with Urinary Tract Infection (one
 
           of the major Hospital Acquired Infections) make it an important target/gene to explore using wet-lab
 
           of the major Hospital Acquired Infections) make it an important target/gene to explore using wet-lab
           experiments in the case of A. baumannii.
+
           experiments in the case of <i>A. baumannii</i>.
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">aroP (Ciprofloxacin and Levofloxacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>aroP</b> </i>(Ciprofloxacin and Levofloxacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           aroP encodes for Aromatic amino acid transport protein. It is a permease that is involved in the transport
+
           <i>aroP </i>encodes for Aromatic amino acid transport protein. It is a permease that is involved in the transport
 
           across the cytoplasmic membrane of the aromatic amino acids (phenylalanine, tyrosine, and tryptophan),
 
           across the cytoplasmic membrane of the aromatic amino acids (phenylalanine, tyrosine, and tryptophan),
           (UP_aroP).
+
           (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P15993" target="_blank">UP_aroP</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Transmembrane transporter activity of aromatic amino acids
+
           <b>GO Molecular function</b>: Transmembrane transporter activity of aromatic amino acids
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Amino acids transport
+
           <b>GO Biological function</b>: Amino acids transport
 
           <br/><br/>
 
           <br/><br/>
           GO Cellular Component: Integral component of Plasma membrane
+
           <b>GO Cellular Component</b>: Integral component of Plasma membrane
 
           <br/><br/>
 
           <br/><br/>
  
           Complete GO annotation: GO_aroP
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P15993" target="_blank">GO_aroP</a>
 
           <br/><br/>
 
           <br/><br/>
           Since aroP helps in encoding protein responsible for transportation aromatic amino acids, therefore it is
+
           Since <i>aroP</i> helps in encoding protein responsible for transportation aromatic amino acids, therefore it is
 
           related to very basic cellular functions. Amino acids are important for the process of transcription and
 
           related to very basic cellular functions. Amino acids are important for the process of transcription and
 
           translation, their transportation plays an important role in these functions.
 
           translation, their transportation plays an important role in these functions.
 
           <br/><br/>
 
           <br/><br/>
           Importance: There is a lack of studies conducted for exploring the functioning of aroP in the context of A.
+
           <b>Importance:</b> There is a lack of studies conducted for exploring the functioning of <i>aroP </i>in the context of  
           baumannii (UP2_aroP), which makes it a novel and important target pathway to be explored for using wet-lab
+
           <i>A. baumannii</i>, which makes it a novel and important target pathway to be explored for using wet-lab
           experiments, especially because it is involved in the basic cellular process i.e. amino acid transport.
+
           experiments, especially because it is involved in the basic cellular process <i>i.e.</i> amino acid transport.
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">tnsB (Ciprofloxacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>tnsB</b> </i>(Ciprofloxacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           tnsB encodes for Transposon Tn7 transposition protein, which are very special proteins helping in cutting,
+
           <i>tnsB </i>encodes for Transposon Tn7 transposition protein, which are very special proteins helping in cutting,
           pasting, and making copies of DNA in the chromosome (UP_tnsB).
+
           pasting, and making copies of DNA in the chromosome (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P13989" target="_blank">UP_tnsB</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: DNA Binding, and Transposase activity
+
           <b>GO Molecular function</b>: DNA Binding, and Transposase activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: DNA Integration and DNA-mediated transposition
+
           <b>GO Biological function</b>: DNA Integration and DNA-mediated transposition
 
           <br/><br/>
 
           <br/><br/>
           GO Cellular Component: Cytoplasmic membrane
+
           <b>GO Cellular Component</b>: Cytoplasmic membrane
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_tnsB
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P13989" target="_blank">GO_tnsB</a>
 
           <br/><br/>
 
           <br/><br/>
 
           Ciprofloxacin acts by inhibition of DNA replication by inhibiting bacterial DNA topoisomerase and DNA-gyrase.
 
           Ciprofloxacin acts by inhibition of DNA replication by inhibiting bacterial DNA topoisomerase and DNA-gyrase.
 
           Transposons help in DNA strand breakage which is also carried out by topoisomerase. These facts make it very
 
           Transposons help in DNA strand breakage which is also carried out by topoisomerase. These facts make it very
           clear that tnsB is an important gene and target in the context of DNA replication and is involved in a similar
+
           clear that <i>tnsB </i>is an important gene and target in the context of DNA replication and is involved in a similar
 
           mechanism as that of Ciprofloxacin.
 
           mechanism as that of Ciprofloxacin.
 
           <br/><br/>
 
           <br/><br/>
           Tn7 class transposon proteins are associated with carbapenem-resistance in A. baumannii (Ref1_tnsB). The study
+
           Tn7 class transposon proteins are associated with carbapenem-resistance in <i>A. baumannii</i> (<a class="wiki-a" href="https://www.sciencedirect.com/science/article/pii/S1517838216305330" target="_blank">Ref1_tnsB</a>). The study
           by Rose (Ref2_tnsB), discovered a novel Tn7-related transposon, TnAbaR1 which contributes to the accumulation
+
           by Rose (<a class="wiki-a" href="https://academic.oup.com/biohorizons/article/3/1/40/228211" target="_blank">Ref2_tnsB</a>), discovered a novel Tn7-related transposon, Tn<i>AbaR1</i> which contributes to the accumulation
 
           and dissemination of antibiotic resistance genes. According to their study, Tn7 is a well-studied, highly
 
           and dissemination of antibiotic resistance genes. According to their study, Tn7 is a well-studied, highly
 
           promiscuous cut-and-paste transposon, found in a variety of bacteria and mainly important for resistance to
 
           promiscuous cut-and-paste transposon, found in a variety of bacteria and mainly important for resistance to
 
           antibiotics such as trimethoprim and streptomycin.
 
           antibiotics such as trimethoprim and streptomycin.
 
           <br/><br/>
 
           <br/><br/>
           Importance: The involvement of tnsB in being a cause of resistance to several antibiotics makes it an
+
           <b>Importance:</b> The involvement of <i>tnsB </i>in being a cause of resistance to several antibiotics makes it an
 
           important target and pathway to be explored especially in the context of our novel protein-based therapeutic
 
           important target and pathway to be explored especially in the context of our novel protein-based therapeutic
           and our pathogen of interest, A. baumannii.
+
           and our pathogen of interest, <i>A. baumannii</i>.
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">xerC (Ciprofloxacin) </h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>xerC</b> </i>(Ciprofloxacin) </h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           xerC encodes for tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining
+
           <i>xerC </i>encodes for tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining
           DNA molecules.
+
           DNA molecules (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0A8P6" target="_blank">UP_xerC</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: DNA binding, Site-specific recombinase activity
+
           <b>GO Molecular function</b>: DNA binding, Site-specific recombinase activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Cell cycle, Cell division, and Chromosome segregation
+
           <b>GO Biological function</b>: Cell cycle, Cell division, and Chromosome segregation
 
           <br/><br/>
 
           <br/><br/>
           GO Cellular Component: Cytoplasm
+
           <b>GO Cellular Component</b>: Cytoplasm
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_xerC
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0A8P6" target="_blank">GO_xerC</a>
 
           <br/><br/>
 
           <br/><br/>
 
           It binds cooperatively to specific DNA consensus sequences that are separated from XerD binding sites by a
 
           It binds cooperatively to specific DNA consensus sequences that are separated from XerD binding sites by a
 
           short central region, forming the heterotetrameric XerC-XerD complex is essential to convert dimers of the
 
           short central region, forming the heterotetrameric XerC-XerD complex is essential to convert dimers of the
 
           bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the
 
           bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the
           segregational stability of plasmid. (UP_xerC)
+
           segregational stability of plasmid (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0A8P6" target="_blank">UP_xerC</a>).
 
           <br/><br/>
 
           <br/><br/>
 
           During the recombination phase, this complex catalyzes two consecutive pairs of strand exchanges, implying
 
           During the recombination phase, this complex catalyzes two consecutive pairs of strand exchanges, implying
 
           that specific pairs of active sites are sequentially switched on and off in the recombinase tetramer to ensure
 
           that specific pairs of active sites are sequentially switched on and off in the recombinase tetramer to ensure
           that appropriate DNA strands will be exchanged at both reaction steps. These findings have been made for E.
+
           that appropriate DNA strands will be exchanged at both reaction steps. These findings have been made for  
           coli and it would be interesting to check for the same in the case of A. baumannii.
+
           <i>E. coli</i> and it would be interesting to check for the same in the case of <i>A. baumannii</i>.
 
           <br/><br/>
 
           <br/><br/>
           According to the study related to A. baumannii conducted by Lin et al. (Ref1_xerC), they concluded that XerC
+
           According to the study related to <i>A. baumannii</i> conducted by Lin <i>et al.</i> (<a class="wiki-a" href="https://www.mdpi.com/2079-6382/9/7/405" target="_blank">Ref1_xerC</a>), they concluded that XerC
 
           and XerD are functional proteins and participate in horizontal dissemination of resistant genes among
 
           and XerD are functional proteins and participate in horizontal dissemination of resistant genes among
 
           bacteria. The horizontal dissemination or transfer of resistance genes is a major cause of the increase in
 
           bacteria. The horizontal dissemination or transfer of resistance genes is a major cause of the increase in
           Antibiotic resistance. Furthermore, the study conducted by Merino et al. (Ref2_xerC), finds that DNA
+
           Antibiotic resistance. Furthermore, the study conducted by Merino <i>et al.</i> (<a class="wiki-a" href="https://aac.asm.org/content/54/6/2724" target="_blank">Ref2_xerC</a>), found that DNA
 
           recombination through the Xer system in plasmids requires XerC and XerD (recombinases). DNA recombination
 
           recombination through the Xer system in plasmids requires XerC and XerD (recombinases). DNA recombination
 
           helps in the natural editing of the bacterial genome and makes the natural process of evolution faster.
 
           helps in the natural editing of the bacterial genome and makes the natural process of evolution faster.
 
           <br/><br/>
 
           <br/><br/>
           Importance: Since A. baumannii is an opportunistic pathogen that is evolving at a faster rate, and as
+
           <b>Importance:</b> Since <i>A. baumannii</i> is an opportunistic pathogen that is evolving at a faster rate, and as
           mentioned above, xerC helps in DNA recombination which leads to natural editing of the genome, becomes an
+
           mentioned above, <i>xerC </i>helps in DNA recombination which leads to natural editing of the genome, becomes an
 
           important target or pathway to be explored using wet-lab experiments.
 
           important target or pathway to be explored using wet-lab experiments.
  
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">asnC (Levofloxacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>asnC</b> </i>(Levofloxacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           asnC encodes for a regulatory protein called AsnC (UP_asnc).
+
           <i>asnC </i>encodes for a regulatory protein called AsnC (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0ACI6" target="_blank">UP_asnC</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Amino acid-binding, DNA-binding transcription activity, and Sequence-specific DNA
+
           <b>GO Molecular function</b>: Amino acid-binding, DNA-binding transcription activity, and Sequence-specific DNA
 
           binding
 
           binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Positive and negative regulation of transcription, Response to amino acid
+
           <b>GO Biological function</b>: Positive and negative regulation of transcription, Response to amino acid
 
           <br/><br/>
 
           <br/><br/>
           Complete annotation: GO_asnC
+
           <b>Complete annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0ACI6" target="_blank">GO_asnC</a>
 
           <br/><br/>
 
           <br/><br/>
           The study conducted by Gebhardt et al. (Ref1_asnC), finds the list of around 300 genes which are important for
+
           The study conducted by Gebhardt <i>et al.</i> (<a class="wiki-a" href="https://mbio.asm.org/content/6/6/e01660-15" target="_blank">Ref1_asnC</a>), finds the list of around 300 genes which are important for
           the survival and growth of A. baumannii, and find two AsnC/Lrp family regulators as putative transcriptional
+
           the survival and growth of <i>A. baumannii</i>, and find two AsnC/Lrp family regulators as putative transcriptional
 
           regulators.
 
           regulators.
 
           <br/><br/>
 
           <br/><br/>
           Importance: The involvement of asnC in amino acid binding and impacting the process of transcription makes it
+
           <b>Importance:</b> The involvement of <i>asnC </i>in amino acid binding and impacting the process of transcription makes it
           an interesting pathway to be explored using wet-lab experiments. Like, aroP, it helps bacteria in performing
+
           an interesting pathway to be explored using wet-lab experiments. Like, <i>aroP</i>, it helps bacteria in performing
 
           basic cellular functions which are essential for survival and growth.
 
           basic cellular functions which are essential for survival and growth.
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">puuP (Levofloxacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>puuP</b> </i>(Levofloxacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           puuP encodes for putrescine importer PuuP (UP_puuP)
+
           <i>puuP </i>encodes for putrescine importer PuuP (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P76037" target="_blank">UP_puuP</a>)
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Putrescine transmembrane transporter activity
+
           <b>GO Molecular function</b>: Putrescine transmembrane transporter activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Amino acid transport and cellular response to DNA damage stimulus
+
           <b>GO Biological function</b>: Amino acid transport and cellular response to DNA damage stimulus
 
           <br/><br/>
 
           <br/><br/>
           Complete annotation: GO_puuP
+
           <b>Complete annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P76037" target="_blank">GO_puuP</a>
 
           <br/><br/>
 
           <br/><br/>
           It is involved in the uptake of Putrescine, and according to a study conducted by Terui et al. (Ref1_puuP) it
+
           It is involved in the uptake of Putrescine, and according to a study conducted by Terui <i>et al.</i> (<a class="wiki-a" href="https://link.springer.com/article/10.1007/s00726-013-1517-x" target="_blank">Ref1_puuP</a>) it
 
           helps in the import of putrescine to be utilized as an energy resource in absence of glucose. Further, it has
 
           helps in the import of putrescine to be utilized as an energy resource in absence of glucose. Further, it has
 
           a biological process of helping in the cellular response to DNA damage, and given the fact that Levofloxacin
 
           a biological process of helping in the cellular response to DNA damage, and given the fact that Levofloxacin
Line 321: Line 400:
 
           be explored.
 
           be explored.
 
           <br/><br/>
 
           <br/><br/>
           According to the study by Hassan et al. (Ref2_puuP), A. baumannii encodes for the transport protein AceI,
+
           According to the study by Hassan <i>et al.</i> (<a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731653/" target="_blank">Ref2_puuP</a>), <i>A. baumannii</i> encodes for the transport protein AceI,
 
           which confers resistance to chlorhexidine, a widely used antiseptic. They also concluded that several gene
 
           which confers resistance to chlorhexidine, a widely used antiseptic. They also concluded that several gene
           expression studies have revealed that the aceI gene responsible for encoding AceI protein is induced in A.
+
           expression studies have revealed that the <i>aceI</i> gene responsible for encoding AceI protein is induced in  
           baumannii by the short-chain diamines cadaverine and putrescine. It helps us in understanding the indirect
+
           <i>A. baumannii</i> by the short-chain diamines cadaverine and putrescine. It helps us in understanding the indirect
           involvement of putrescine imported by puuP in antibiotic resistance.
+
           involvement of putrescine imported by <i>puuP </i>in antibiotic resistance.
 
           <br/><br/>
 
           <br/><br/>
           Importance: puuP helps in conferring resistance to chlorhexidine, it would be very important to check for the
+
           <b>Importance:</b> <i>puuP </i>helps in conferring resistance to chlorhexidine, it would be very important to check for the
           same in the case of Levofloxacin especially for A. baumannii.
+
           same in the case of Levofloxacin especially for <i>A. baumannii</i>.
 
         </p>
 
         </p>
 
         <!--Links to be added (garbage links)-->
 
         <!--Links to be added (garbage links)-->
 +
        <br/><br/><br/>
 
       </div>
 
       </div>
  
Line 343: Line 423:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <!--table2-->
+
       
         <h3 class="wiki-h wiki-h3">aadB (Gentamicin, Tobramycin and Amikacin)</h3>
+
 
 +
 
 +
 
 +
 
 +
 
 +
         <table class="table table-hover table-bordered side-wrapped-item">
 +
          <thead class="thead-dark">
 +
            <tr>
 +
              <th scope="col">Genes</th>
 +
              <th scope="col">Antibiotic</th>
 +
              <th scope="col">Gene Ontology<br/> Annotations</th>
 +
              <th scope="col">Mechanism of Action</th>
 +
              <th scope="col">References</th>
 +
            </tr>
 +
          </thead>
 +
          <tbody>
 +
            <tr>
 +
              <td><i>aadB</i></td>           
 +
              <td>Gentamicin<br/>
 +
                Tobramycin<br/>
 +
                Amikacin
 +
              </td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0AE04" target="_blank">GO_aadB</a></td>           
 +
              <td>Antibiotic inactivation</td>           
 +
              <td><a class="wiki-a" href="https://card.mcmaster.ca/ontology/36369" target="_blank">CARD_aadB</a><br/>
 +
                <a class="wiki-a" href="https://www.clin-lab-publications.com/article/3088" target="_blank">Ref1_aadB</a><br/>
 +
                <a class="wiki-a" href="https://msphere.asm.org/content/3/4/e00271-18" target="_blank">Ref2_aadB</a><br/>
 +
                <a class="wiki-a" href="https://academic.oup.com/jac/article-abstract/75/10/2760/5873331" target="_blank">Ref3_aadB</a><br/>
 +
                <a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0250-9" target="_blank">Ref4_aadB</a></td>           
 +
            </tr>
 +
            <tr>
 +
              <td><i>neo</i></td> 
 +
              <td>Gentamicin<br/>
 +
                Tobramycin<br/>
 +
                Amikacin
 +
              </td>         
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P00552" target="_blank">GO_neo</a></td>           
 +
              <td>Kanamycin kinase activity</td>           
 +
              <td>-</td>     
 +
                       
 +
            </tr>
 +
            <tr>
 +
              <td><i>msr(E)</i></td>
 +
              <td>Gentamicin<br/>
 +
                Tobramycin<br/>
 +
                Amikacin
 +
              </td>                         
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=F6M9M9" target="_blank">GO_msrE</a></td>           
 +
              <td>Plasmid DNA</td>           
 +
              <td><a class="wiki-a" href="https://aac.asm.org/content/61/8/e00780-17" target="_blank">Ref1_msrE</a><br/>
 +
                <a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-019-0344-7" target="_blank">Ref2_msrE</a><br/>
 +
                <a class="wiki-a" href="https://academic.oup.com/jac/article/74/6/1484/5370329" target="_blank">Ref3_msrE</a><br/>
 +
                <a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0250-9" target="_blank">Ref4_msrE</a></td>           
 +
            </tr>
 +
            <tr>
 +
              <td><i>emrE</i></td>           
 +
              <td>Gentamicin</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P23895" target="_blank">GO_emrE</a></td>           
 +
              <td>Antibiotic efflux</td>           
 +
              <td><a class="wiki-a" href="https://card.mcmaster.ca/ontology/36403" target="_blank">CARD_emrE</a></td>           
 +
            </tr>
 +
            <tr>
 +
              <td><i>cysL</i></td>           
 +
              <td>Tobramycin</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=A0A0M3FB12" target="_blank">GO_cysL</a></td>           
 +
              <td>DNA binding</td>           
 +
              <td>-</td>           
 +
            </tr>
 +
            <tr>
 +
              <td><i>rmtB</i></td>           
 +
              <td>Amikacin</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q763K9" target="_blank">GO_rmtB</a></td>           
 +
              <td>Antibiotic target alteration</td>           
 +
              <td><a class="wiki-a" href="https://card.mcmaster.ca/ontology/37240" target="_blank">CARD_rmtB</a><br/>
 +
                <a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680199/" target="_blank">Ref1_rmtB</a><br/>
 +
                <a class="wiki-a" href="https://www.jkms.org/Synapse/Data/PDFData/0063JKMS/jkms-33-e262.pdf" target="_blank">Ref2_rmtB</a><br/>
 +
                <a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/17875999/" target="_blank">Ref3_rmtB</a><br/>
 +
                <a class="wiki-a" href="https://www.spandidos-publications.com/10.3892/etm.2016.3828#b13-etm-0-0-3828" target="_blank">Ref4_rmtB</a></td>           
 +
            </tr>
 +
           
 +
          </tbody>
 +
         </table>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
        <br/><br/><h4 class="wiki-h wiki-h4"><i><b>aadB</b> </i>(Gentamicin, Tobramycin and Amikacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           aadB encodes for 2''-aminoglycoside nucleotidyltransferase (UP_aadB)
+
           <i>aadB </i>encodes for 2''-aminoglycoside nucleotidyltransferase (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0AE04" target="_blank">UP_aadB</a>)
 
           <br/><br/>
 
           <br/><br/>
 
           It helps in mediating bacterial resistance to kanamycin, gentamicin, dibekacin, sisomicin, and tobramycin by
 
           It helps in mediating bacterial resistance to kanamycin, gentamicin, dibekacin, sisomicin, and tobramycin by
           adenylate the 2''-hydroxyl group of these antibiotics in K. pneumoniae (UP_Kp_aadB) and kanamycin, gentamicin,
+
           adenylate the 2''-hydroxyl group of these antibiotics in <i>K. pneumoniae </i>(<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0AE05" target="_blank">UP_Kp_aadB</a>) and kanamycin, gentamicin,
           and tobramycin in E. coli (UP_aadB).
+
           and tobramycin in <i>E. coli</i> (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0AE04" target="_blank">UP_aadB</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Aminoglycoside 2''-nucleotidyltransferase activity, and Metal ion binding
+
           <b>GO Molecular function</b>: Aminoglycoside 2''-nucleotidyltransferase activity, and Metal ion binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Response to antibiotic and Antibiotic resistance
+
           <b>GO Biological function</b>: Response to antibiotic and Antibiotic resistance
 
           <br/><br/>
 
           <br/><br/>
           Complete annotation: GO_aadB
+
           <b>Complete annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0AE04" target="_blank">GO_aadB</a>
 
           <br/><br/>
 
           <br/><br/>
           aadB is a resistance-conferring gene which is confirmed by one of the most essential and relevant databases
+
           <i>aadB </i>is a resistance-conferring gene which is confirmed by one of the most essential and relevant databases
           i.e. The Comprehensive Antibiotic Resistance Database (CARD). It works by the mechanism of antibiotic
+
           <i>i.e.</i> The Comprehensive Antibiotic Resistance Database (CARD). It works by the mechanism of antibiotic
           inactivation and confers resistance to aminoglycoside antibiotics (CARD_aadB).
+
           inactivation and confers resistance to aminoglycoside antibiotics (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/36369" target="_blank">CARD_aadB</a>).
 
           <br/><br/>
 
           <br/><br/>
           The study conducted by Rizk et al. (Ref1_aadB) involves the collection of clinical samples of A. baumannii
+
           The study conducted by Rizk <i>et al.</i> (<a class="wiki-a" href="https://www.clin-lab-publications.com/article/3088" target="_blank">Ref1_aadB</a>) involved the collection of clinical samples of <i>A. baumannii</i>
           strains from intensive care units (ICUs) patients with suspected hospital-acquired infections followed by
+
           strains from patients in Intensive Care Units (ICUs) with suspected hospital-acquired infections followed by
 
           checking them for resistance to aminoglycoside antibiotics. The study concluded that the most common prevalent
 
           checking them for resistance to aminoglycoside antibiotics. The study concluded that the most common prevalent
           resistant genes among A. baumannii resistance to aminoglycosides was aadB with a contribution towards
+
           resistant genes among <i>A. baumannii</i> resistance to aminoglycosides was <i>aadB </i>with a contribution towards
 
           antibiotic resistance as high as 42%. Since this study involves strains taken from hospitals with suspected
 
           antibiotic resistance as high as 42%. Since this study involves strains taken from hospitals with suspected
 
           infections, it makes it essential for our novel protein-based drug to be checked for its efficacy against
 
           infections, it makes it essential for our novel protein-based drug to be checked for its efficacy against
           aadB.
+
           <i>aadB</i>.
 
           <br/><br/>
 
           <br/><br/>
           As per the study by Anderson et al. (Ref2_aadB), in A. baumannii AB5075, a large plasmid (p1AB5075) carries
+
           As per the study by Anderson <i>et al.</i> (<a class="wiki-a" href="https://msphere.asm.org/content/3/4/e00271-18" target="_blank">Ref2_aadB</a>), in <i>A. baumannii</i> AB5075, a large plasmid (p1AB5075) carries
           aadB, a 2″-nucleotidyltransferase that confers resistance to both tobramycin and gentamicin but not amikacin.
+
           <i>aadB</i>, a 2″-nucleotidyltransferase that confers resistance to both tobramycin and gentamicin but not amikacin.
           It is very important in the case of our machine learning approach since our approach ranks aadB as the most
+
           It is very important in the case of our machine learning approach since our approach ranks <i>aadB </i>as the most
 
           important feature (gene/allele) in the case of Gentamicin and Tobramycin but not in the case of Amikacin.
 
           important feature (gene/allele) in the case of Gentamicin and Tobramycin but not in the case of Amikacin.
 
           <br/><br/>
 
           <br/><br/>
           The study conducted by Chan et al. (Ref3_aadB), found a novel antibiotic resistance island in A. baumannii by
+
           The study conducted by Chan <i>et al.</i> (<a class="wiki-a" href="https://academic.oup.com/jac/article-abstract/75/10/2760/5873331?redirectedFrom=fulltext" target="_blank">Ref3_aadB</a>), found a novel antibiotic resistance island in <i>A. baumannii</i> by
 
           analyzing genomes of several isolates collected from the US hospital system. They further concluded that after
 
           analyzing genomes of several isolates collected from the US hospital system. They further concluded that after
           sequencing the genomes to completion, they found tobramycin-resistance gene aadB.
+
           sequencing the genomes to completion, they found tobramycin-resistance gene <i>aadB</i>.
 
           <br/><br/>
 
           <br/><br/>
           Si-Tuan et al., (Ref4_aadB) characterized the genome of the A. baumannii strain DMS06669 which was isolated
+
           Si-Tuan <i>et al.</i>, (<a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0250-9" target="_blank">Ref4_aadB</a>, <a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0250-9" target="_blank">Ref4_msrE</a>) characterized the genome of the <i>A. baumannii</i> strain DMS06669 which was isolated from the sputum of a male patient with hospital-acquired pneumonia, and identified genes related to antibiotic
          from the sputum of a male patient with hospital-acquired pneumonia, and identified genes related to antibiotic
+
           resistance. They find <i>aadB </i>which is majorly resistant to gentamicin, as one of the genes responsible for
           resistance. They find aadB which is majorly resistant to gentamicin, as one of the genes responsible for
+
 
           conferring resistance in the strain.
 
           conferring resistance in the strain.
 
           <br/><br/>
 
           <br/><br/>
           Importance: These several studies make it very clear that aadB is an important gene especially considering
+
           <b>Importance:</b> These several studies make it very clear that <i>aadB </i>is an important gene especially considering resistance towards aminoglycoside antibiotics. Moreover, the presence of resistance by <i>aadB </i>to majorly gentamicin and tobramycin but not amikacin further validates the effectiveness of our machine learning analysis as <i>aadB </i>was the top
          aminoglycoside antibiotics. Moreover, the presence of resistance by aadB to majorly gentamicin and tobramycin
+
          but not amikacin further validates the effectiveness of our machine learning analysis as aadB was the top
+
 
           feature in the first two antibiotics but not in the latter.
 
           feature in the first two antibiotics but not in the latter.
 
         </p>
 
         </p>
  
         <h3 class="wiki-h wiki-h3">neo (Gentamicin, Tobramycin and Amikacin) </h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>neo </b></i>(Gentamicin, Tobramycin and Amikacin) </h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           neo encodes Aminoglycoside 3'-phosphotransferase (UP_neo)
+
           <i>neo </i>encodes Aminoglycoside 3'-phosphotransferase (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P00552" target="_blank">UP_neo</a>)
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: ATP binding, Kanamycin kinase activity
+
           <b>GO Molecular function</b>: ATP binding, Kanamycin kinase activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Response to antibiotic and Antibiotic resistance
+
           <b>GO Biological function</b>: Response to antibiotic and Antibiotic resistance
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_neo
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P00552" target="_blank">GO_neo</a>
 
           <br/><br/>
 
           <br/><br/>
 
           It helps in providing resistance to kanamycin, neomycin, paromomycin, ribostamycin, butirosin, and gentamicin
 
           It helps in providing resistance to kanamycin, neomycin, paromomycin, ribostamycin, butirosin, and gentamicin
           B in the case of K. pneumoniae. This enzyme is encoded by the kanamycin and neomycin resistance transposon
+
           B in the case of <i>K. pneumoniae</i>. This enzyme is encoded by the kanamycin and neomycin resistance transposon
           Tn5. Tn5 was originally isolated from K.pneumoniae, but has been transferred to a number of bacteria including
+
           Tn5. Tn5 was originally isolated from <i>K. pneumoniae</i>, but has been transferred to a number of bacteria including
           E.coli. Since it has been transferred to E. coli, it is quite important to check for its relevance in the case
+
           <i>E. coli</i>. Since it has been transferred to <i>E. coli</i>, it is quite important to check for its relevance in the case
           of A. baumannii.
+
           of <i>A. baumannii</i>.
 
           <br/><br/>
 
           <br/><br/>
           Importance: There has been a lack of literature studies conducted for neo in the context of A. baumannii, but
+
           <b>Importance:</b> There has been a lack of literature studies conducted for <i>neo </i>in the context of <i>A. baumannii</i>, but
 
           it targets using protein pathway which is similar in mechanism to aminoglycoside antibiotics. Moreover, as
 
           it targets using protein pathway which is similar in mechanism to aminoglycoside antibiotics. Moreover, as
           mentioned before, it would be interesting to check for its relevance in A. baumannii.
+
           mentioned before, it would be interesting to check for its relevance in <i>A. baumannii</i> in context of our novel protein-based drug.
  
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">msr(E) (Gentamicin, Tobramycin and Amikacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>msr(E)</b> </i>(Gentamicin, Tobramycin and Amikacin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           msr(E) encodes for ABC-F type ribosomal protection protein (UP_msrE).
+
           <i>msr(E) </i>encodes for ABC-F type ribosomal protection protein (<a class="wiki-a" href="https://www.uniprot.org/uniprot/F6M9M9" target="_blank">UP_msrE</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: ATPase binding and ATP binding
+
           <b>GO Molecular function</b>: ATPase binding and ATP binding
 
           <br/><br/>
 
           <br/><br/>
           Complete annotation: GO_msrE
+
           <b>Complete annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=F6M9M9" target="_blank">GO_msrE</a>
 
           <br/><br/>
 
           <br/><br/>
           msr(E) is a resistant conferring gene as per the Comprehensive Antibiotic Resistance Database (CARD) and
+
           <i>msr(E) </i>is a resistant conferring gene as per the Comprehensive Antibiotic Resistance Database (CARD) and
           provides resistance through antibiotic target alteration (CARD_msrE). Furthermore, as per CARD, Msr(E) is an
+
           provides resistance through antibiotic target alteration (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/39685" target="_blank">CARD_msrE</a>). Furthermore, as per CARD, Msr(E) is an
           ABC-F subfamily protein expressed to K. pneumoniae that confers resistance to erythromycin and streptogramin B
+
           ABC-F subfamily protein expressed to <i>K. pneumoniae </i>that confers resistance to erythromycin and streptogramin B
 
           antibiotics. It is associated with plasmid DNA. It is also 100% identical to ABC-F type ribosomal protection
 
           antibiotics. It is associated with plasmid DNA. It is also 100% identical to ABC-F type ribosomal protection
 
           protein Msr(E) which is in multiple species. Since it is associated with plasmid DNA, it becomes an important
 
           protein Msr(E) which is in multiple species. Since it is associated with plasmid DNA, it becomes an important
 
           factor in horizontal transfer and dissemination of antibiotic resistance.
 
           factor in horizontal transfer and dissemination of antibiotic resistance.
 
           <br/><br/>
 
           <br/><br/>
           Blackwell and Hall (Ref1_msrE) find in their study that macrolide resistance genes msrE and mphE were present
+
           Blackwell and Hall (<a class="wiki-a" href="https://aac.asm.org/content/61/8/e00780-17" target="_blank">Ref1_msrE</a>) find in their study that macrolide resistance genes <i>msrE</i> and <i>mphE</i> were present
           in an 18.2-kb plasmid of A. baumannii isolate from Singapore which confers resistance to erythromycin and
+
           in an 18.2-kb plasmid of <i>A. baumannii</i> isolate from Singapore which confers resistance to erythromycin and
 
           tetracycline, both of which follow protein synthesis mechanism.
 
           tetracycline, both of which follow protein synthesis mechanism.
 
           <br/><br/>
 
           <br/><br/>
           A study conducted by Karah et al. (Ref2_msrE) concluded that msr(E) is one of the resistance genes present in
+
           A study conducted by Karah <i>et al.</i> (<a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-019-0344-7" target="_blank">Ref2_msrE</a>) concluded that <i>msr(E) </i>is one of the resistance genes present in
           clinical isolates of A. baumannii in Pakistan. The study by Kumburu et al. (Ref3_msrE) utilized Whole Genome
+
           clinical isolates of <i>A. baumannii</i> in Pakistan. The study by Kumburu <i>et al.</i> (<a class="wiki-a" href="https://academic.oup.com/jac/article/74/6/1484/5370329" target="_blank">Ref3_msrE</a>) utilized Whole Genome
           Sequencing (WGS) to identify resistance-conferring genes in MDR A. baumannii in Tanzania. They found several
+
           Sequencing (WGS) to identify resistance-conferring genes in MDR <i>A. baumannii</i> in Tanzania. They found several
           antibiotic resistance genes some of which were present in chromosomes while some on plasmids. msr(E) was
+
           antibiotic resistance genes some of which were present in chromosomes while some on plasmids. <i>msr(E) </i>was
 
           detected as an antibiotic resistance gene that is present on plasmids and playing an important role in the
 
           detected as an antibiotic resistance gene that is present on plasmids and playing an important role in the
 
           spreading of the resistance.
 
           spreading of the resistance.
 
           <br/><br/>
 
           <br/><br/>
           Similar to the case of aadB, the study conducted by Si-Tuan et al., (Ref4_aadB, Ref4_msrE) identified msr(E)
+
           Similar to the case of <i>aadB</i>, the study conducted by Si-Tuan <i>et al.</i>, (<a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0250-9" target="_blank">Ref4_aadB</a>, <a class="wiki-a" href="https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0250-9" target="_blank">Ref4_msrE</a>) identified <i>msr(E)</i> which is majorly resistant to streptogramin, which follows the similar mechanism as of aminoglycoside antibiotics.
          which is majorly resistant to streptogramin, which follows the similar mechanism as of aminoglycoside
+
          antibiotics.
+
 
           <br/><br/>
 
           <br/><br/>
           Importance: As shown by several studies, msr(E) is responsible for resistance to several antibiotics like
+
           <b>Importance:</b> As shown by several studies, <i>msr(E) </i>is responsible for resistance to several antibiotics like
 
           macrolide, streptogramin, etc, which follow a similar mechanism to those of aminoglycosides, it becomes
 
           macrolide, streptogramin, etc, which follow a similar mechanism to those of aminoglycosides, it becomes
           exciting and interesting to check for its relevance to Gentamicin, Tobramycin, and Amikacin.
+
           exciting and interesting to check for its relevance to Gentamicin, Tobramycin, and Amikacin in case of <i>A. baumannii</i>.
  
 
         </p>
 
         </p>
  
         <h3 class="wiki-h wiki-h3">emrE (Gentamicin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>emrE </b></i>(Gentamicin)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           emrE encodes for Multidrug transporter EmrE (UP_emrE).
+
           <i>emrE </i>encodes for Multidrug transporter EmrE (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P23895" target="_blank">UP_emrE</a>).
 
           <br/><br/>
 
           <br/><br/>
  
  
           GO Molecular function: Antiporter activity, Identical protein binding, etc.
+
           <b>GO Molecular function</b>: Antiporter activity, Identical protein binding, etc.
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Cellular response to DNA damage stimulus, Response to drug, etc.
+
           <b>GO Biological function</b>: Cellular response to DNA damage stimulus, Response to drug, etc.
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_emrE
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P23895" target="_blank">GO_emrE</a>
 
           <br/><br/>
 
           <br/><br/>
 
           It is a multidrug efflux protein that confers resistance to a wide range of toxic compounds, including
 
           It is a multidrug efflux protein that confers resistance to a wide range of toxic compounds, including
 
           ethidium, methyl viologen, acriflavine, tetraphenylphosphonium (TPP+), benzalkonium, propidium, dequalinium,
 
           ethidium, methyl viologen, acriflavine, tetraphenylphosphonium (TPP+), benzalkonium, propidium, dequalinium,
           and the aminoglycoside antibiotics streptomycin and tobramycin (UP_emrE).
+
           and the aminoglycoside antibiotics streptomycin and tobramycin (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P23895" target="_blank">UP_emrE</a>).
 
           <br/><br/>
 
           <br/><br/>
 
           Further, as per the Comprehensive Antibiotic Resistance Database (CARD), EmrE is a small multidrug transporter
 
           Further, as per the Comprehensive Antibiotic Resistance Database (CARD), EmrE is a small multidrug transporter
           and works by antibiotic efflux mechanism to confer antibiotic resistance (CARD_emrE).
+
           and works by antibiotic efflux mechanism to confer antibiotic resistance (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/36403" target="_blank">CARD_emrE</a>).
 
           <br/><br/>
 
           <br/><br/>
           Importance: emrE is majorly found in P. aeruginosa and E. coli, which makes it quite interesting to check for
+
           <b>Importance:</b> <i>emrE </i>is majorly found in <i>P. aeruginosa </i>and <i>E. coli</i>, which makes it quite interesting to check for
           existence on A. baumannii genomes. Moreover, it has been shown to be causing resistance to Tobramycin while
+
           existence on <i>A. baumannii</i> genomes. Moreover, it has been shown to be causing resistance to Tobramycin while
 
           our machine learning detected it to be an important gene in the case of Gentamicin, so it would also be
 
           our machine learning detected it to be an important gene in the case of Gentamicin, so it would also be
 
           exciting to validate and confirm by wet-lab experiments.
 
           exciting to validate and confirm by wet-lab experiments.
  
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">cysL (Tobramycin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>cysL</b> </i>(Tobramycin)</h4>
  
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           cysL encodes for HTH-type transcriptional regulator CysL (UP_cysL).
+
           <i>cysL </i>encodes for HTH-type transcriptional regulator CysL (<a class="wiki-a" href="https://www.uniprot.org/uniprot/A0A0M3FB12" target="_blank">UP_cysL</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: DNA-binding transcription factor activity
+
           <b>GO Molecular function</b>: DNA-binding transcription factor activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: DNA-templated regulation of transcription
+
           <b>GO Biological function</b>: DNA-templated regulation of transcription
 
           <br/><br/>
 
           <br/><br/>
 
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=A0A0M3FB12" target="_blank">GO_cysL</a>
 
+
           Complete GO annotation: GO_cysL
+
 
           <br/><br/>
 
           <br/><br/>
           There is a lack of literature evidence in the case of cysL, but it has been identified as one of the topmost
+
           There is a lack of literature evidence in the case of <i>cysL</i>, but it has been identified as one of the topmost
 
           features in the case of Tobramycin, and given the fact our machine learning has identified several genes
 
           features in the case of Tobramycin, and given the fact our machine learning has identified several genes
           confirming to literature evidence, cysL is one of the novel genes uncovered by our algorithm responsible for
+
           confirming to literature evidence, <i>cysL </i>is one of the novel genes uncovered by our algorithm responsible for
 
           antibiotic resistance.
 
           antibiotic resistance.
 
           <br/><br/>
 
           <br/><br/>
  
  
           Importance: It would be interesting to check the relevance and importance of cysL in the context of A.
+
           <b>Importance:</b> It would be interesting to check the relevance and importance of <i>cysL </i>in the context of <i>A.
           baumannii and our novel protein-based drug as well, as it has been detected as the topmost feature by machine
+
           baumannii</i> and our novel protein-based drug as well, as it has been detected as the topmost feature by machine
 
           learning.
 
           learning.
  
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">rmtB (Amikacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>rmtB</b> </i>(Amikacin)</h4>
  
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           rmtB encodes for 16S rRNA (guanine(1405)-N(7))-methyltransferase (UP_rmtB).
+
           <i>rmtB </i>encodes for 16S rRNA (guanine(1405)-N(7))-methyltransferase (<a class="wiki-a" href="https://www.uniprot.org/uniprot/Q763K9" target="_blank">UP_rmtB</a>).
 
           <br/><br/>
 
           <br/><br/>
  
  
           GO Molecular function: rRNA methyltransferase activity
+
           <b>GO Molecular function</b>: rRNA methyltransferase activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Response to antibiotic and Antibiotic resistance
+
           <b>GO Biological function</b>: Response to antibiotic and Antibiotic resistance
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_rmtB
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q763K9" target="_blank">GO_rmtB</a>
 
           <br/><br/>
 
           <br/><br/>
  
  
           rmtB encoding protein specifically methylated the N7 position of guanine 1405 in 16S rRNA, and conferring
+
           <i>rmtB </i>encoding protein specifically methylated the N7 position of guanine 1405 in 16S rRNA, and conferring
           resistance to various aminoglycosides (UP_rmtB).
+
           resistance to various aminoglycosides (<a class="wiki-a" href="https://www.uniprot.org/uniprot/Q763K9" target="_blank">UP_rmtB</a>).
 
           <br/><br/>
 
           <br/><br/>
 
           It is a resistance gene as per the Comprehensive Antibiotic Resistance Database (CARD), which works with the
 
           It is a resistance gene as per the Comprehensive Antibiotic Resistance Database (CARD), which works with the
 
           mechanism of antibiotic target alteration and belongs to the drug class of aminoglycoside antibiotics
 
           mechanism of antibiotic target alteration and belongs to the drug class of aminoglycoside antibiotics
           (CARD_rmtB).
+
           (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/37240" target="_blank">CARD_rmtB</a>).
 
           <br/><br/>
 
           <br/><br/>
  
           Tada et al. (Ref1_rmtB) conducted a study on strains of A. baumannii and P. aeruginosa isolated from patients
+
           Tada <i>et al.</i> (<a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680199/" target="_blank">Ref1_rmtB</a>) conducted a study on strains of <i>A. baumannii</i> and <i>P. aeruginosa </i>isolated from patients
 
           in intensive care units (ICUs) in two medical settings in Vietnam and out of which 71.3% strains were highly
 
           in intensive care units (ICUs) in two medical settings in Vietnam and out of which 71.3% strains were highly
 
           resistant to amikacin and gentamicin. They further concluded that, 16S rRNA methylase RmtB was produced by 9
 
           resistant to amikacin and gentamicin. They further concluded that, 16S rRNA methylase RmtB was produced by 9
           strains (of 101) of A. baumannii and 2 (of 15) strains of P. aeruginosa and 16S rRNA methylase producing
+
           strains (of 101) of <i>A. baumannii</i> and 2 (of 15) strains of <i>P. aeruginosa </i>.
          organism are emerging.
+
 
           <br/><br/>
 
           <br/><br/>
  
  
           The study by Lee et al. (Ref2_rmtB) analyzed amikacin resistant strains of gram-negative bacteria in Korea and
+
           The study by Lee <i>et al.</i> (<a class="wiki-a" href="https://www.jkms.org/Synapse/Data/PDFData/0063JKMS/jkms-33-e262.pdf" target="_blank">Ref2_rmtB</a>) analyzed amikacin resistant strains of gram-negative bacteria in Korea and
           concluded that armA and rmtB were genes predominantly responsible for the resistance.
+
           concluded that <i>armA</i> and <i>rmtB </i>were genes predominantly responsible for the resistance.
 
           <br/><br/>
 
           <br/><br/>
           Wachino et al. (Ref3_rmtB) and Wang et al. (Ref4_rmtB) concluded that 16S rRNA methylases, which lead to the
+
           Wachino <i>et al.</i> (<a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/17875999/" target="_blank">Ref3_rmtB</a>) and Wang <i>et al.</i> (<a class="wiki-a" href="https://www.spandidos-publications.com/10.3892/etm.2016.3828#b13-etm-0-0-3828" target="_blank">Ref4_rmtB</a>) concluded that 16S rRNA methylases, which lead to the
 
           high-level resistance of various aminoglycosides, can easily transfer to other bacteria since their genes are
 
           high-level resistance of various aminoglycosides, can easily transfer to other bacteria since their genes are
 
           typically present on plasmids. The transfer of genes plays an important role in horizontal gene transfer and
 
           typically present on plasmids. The transfer of genes plays an important role in horizontal gene transfer and
 
           the dissemination of antibiotic resistance.
 
           the dissemination of antibiotic resistance.
 
           <br/><br/>
 
           <br/><br/>
           Importance: Several studies have indicated the spread of aminoglycoside resistance in A. baumannii which is a
+
           <b>Importance:</b> Several studies have indicated the spread of aminoglycoside resistance in <i>A. baumannii</i> which is a
 
           major cause of worry for the researchers. Since our novel drug is protein-based therapeutic, it becomes
 
           major cause of worry for the researchers. Since our novel drug is protein-based therapeutic, it becomes
 
           apparent to test our drug for its efficacy against such antibiotic-resistant genes.
 
           apparent to test our drug for its efficacy against such antibiotic-resistant genes.
 
         </p>
 
         </p>
 
         <!--Links to be added (garbage links)-->
 
         <!--Links to be added (garbage links)-->
 +
        <br/><br/><br/>
 +
  
 
       </div>
 
       </div>
Line 554: Line 721:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <!--table3-->
+
       
         <h3 class="wiki-h wiki-h3">glmM (Ceftriaxone)</h3>
+
 
 +
 
 +
 
 +
 
 +
 
 +
         <table class="table table-hover table-bordered side-wrapped-item">
 +
          <thead class="thead-dark">
 +
            <tr>
 +
              <th scope="col">Genes</th>
 +
              <th scope="col">Antibiotic</th>
 +
              <th scope="col">Gene Ontology<br/> Annotations</th>
 +
              <th scope="col">Mechanism of Action</th>
 +
              <th scope="col">References</th>
 +
            </tr>
 +
          </thead>
 +
          <tbody>
 +
            <tr>
 +
              <td>glmM</td>           
 +
              <td>Ceftriaxone</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P31120" target="_blank">GO_glmM</a></td>           
 +
              <td>Phosphoglucosamine mutase protein</td>           
 +
              <td><a class="wiki-a" href="https://aac.asm.org/content/59/2/1168" target="_blank">Ref1_glmM</a><br/>
 +
                <a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/10913078/" target="_blank">Ref2_glmM</a><br/>
 +
                <a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628348/" target="_blank">Ref3_glmM</a></td>                 
 +
            </tr>
 +
            <tr>
 +
              <td>mshA</td>           
 +
              <td>Ceftriaxone</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P9WMY7" target="_blank">GO_mshA</a></td>           
 +
              <td>D-inositol 3-phosphate glycosyltransferase</td>           
 +
              <td><a class="wiki-a" href="https://card.mcmaster.ca/ontology/43086" target="_blank">CARD1_mshA</a><br/>
 +
                <a class="wiki-a" href="https://card.mcmaster.ca/ontology/43087" target="_blank">CARD2_mshA</a><br/>
 +
                <a class="wiki-a" href="https://card.mcmaster.ca/ontology/43111" target="_blank">CARD3_mshA</a></td>                 
 +
            </tr>
 +
            <tr>
 +
              <td>relE</td>           
 +
              <td>Imipenem</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0C077" target="_blank">GO_relE</a></td>           
 +
              <td>mRNA interferase toxin</td>           
 +
              <td><a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/21788497/" target="_blank">Ref1_relE</a><br/>
 +
                <a class="wiki-a" href="https://www.derpharmachemica.com/pharma-chemica/in-silico-modeling-of-releb-type-ii-toxinantitoxin-system-in-acinetobacter-baumannii-as-a-therapeutic-target-via-antimicrobial-pho-14977.html" target="_blank">Ref2_relE</a><br/>
 +
                <a class="wiki-a" href="https://card.mcmaster.ca/ontology/40753" target="_blank">CARD_relE</a></td>                 
 +
            </tr>
 +
            <tr>
 +
              <td>tufA</td>           
 +
              <td>Imipenem</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0CE47" target="_blank">GO_tufA</a></td>           
 +
              <td>Elongation factor Tu 1</td>           
 +
              <td><a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/26230848/" target="_blank">Ref1_tufA</a></td>                 
 +
            </tr>
 +
            <tr>
 +
              <td>yafQ</td>           
 +
              <td>Ceftazidime</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q47149" target="_blank">GO_yafQ</a></td>           
 +
              <td>mRNA interferase toxin</td>           
 +
              <td>-</td>                 
 +
            </tr>
 +
            <tr>
 +
              <td>eptA</td>           
 +
              <td>Ceftazidime</td>           
 +
              <td><a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P30845" target="_blank">GO_eptA</a></td>           
 +
              <td>Phosphoethanolamine transferase</td>           
 +
              <td><a class="wiki-a" href="https://aac.asm.org/content/63/3/e01586-18" target="_blank">Ref1_eptA</a><br/>
 +
                <a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635527/" target="_blank">Ref2_eptA</a><br/>
 +
                <a class="wiki-a" href="https://card.mcmaster.ca/ontology/40186" target="_blank">CARD_eptA</a></td>                 
 +
            </tr>
 +
           
 +
           
 +
          </tbody>
 +
         </table>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
        <br/><br/><h4 class="wiki-h wiki-h4"><i><b>glmM</b> </i>(Ceftriaxone)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           glmM encodes for Phosphoglucosamine mutase protein (UP_glmM).
+
           <i>glmM </i>encodes for Phosphoglucosamine mutase protein (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P31120" target="_blank">UP_glmM</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Magnesium ion binding, Phosphoglucosamine mutase activity, and Phosphomannomutase
+
           <b>GO Molecular function</b>: Magnesium ion binding, Phosphoglucosamine mutase activity, and Phosphomannomutase
 
           activity
 
           activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Carbohydrate metabolic process, Protein autophosphorylation, and
+
           <b>GO Biological function</b>: Carbohydrate metabolic process, Protein autophosphorylation, and
 
           UDP-N-acetylglucosamine biosynthetic process
 
           UDP-N-acetylglucosamine biosynthetic process
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_glmM
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P31120" target="_blank">GO_glmM</a>
 
           <br/><br/>
 
           <br/><br/>
           Li et al. (Ref1_glmM) analyzed carbapenem-resistant clinical A. baumannii strains. They identified several
+
           Li <i>et al.</i> (<a class="wiki-a" href="https://aac.asm.org/content/59/2/1168" target="_blank">Ref1_glmM</a>) analyzed carbapenem-resistant clinical <i>A. baumannii</i> strains. They identified several
 
           AbaR resistance islands for a better understanding of evolutionary processes contributing to the emergence of
 
           AbaR resistance islands for a better understanding of evolutionary processes contributing to the emergence of
           carbapenem-resistant A. baumannii. As per their analysis, phosphoglucosamine mutase (GlmM) was detected in
+
           carbapenem-resistant <i>A. baumannii</i>. As per their analysis, phosphoglucosamine mutase (GlmM) was detected in
 
           type 2, 7, and 10 AbaR islands. It is important to note that GlmM can catalyze the conversion of
 
           type 2, 7, and 10 AbaR islands. It is important to note that GlmM can catalyze the conversion of
 
           glucosamine-6-phosphate to glucosamine-1-phosphate, which is an essential step in the formation of the cell
 
           glucosamine-6-phosphate to glucosamine-1-phosphate, which is an essential step in the formation of the cell
           wall precursor UDP-N-acetylglucosamine (Ref2_glmM).
+
           wall precursor UDP-N-acetylglucosamine (<a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/10913078/" target="_blank">Ref2_glmM</a>).
 
           <br/><br/>
 
           <br/><br/>
           Kenyon and Lee (Ref3_glmM) analyzed the biosynthesis of extracellular polysaccharides which are major
+
           Kenyon and Hall (<a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628348/" target="_blank">Ref3_glmM</a>) analyzed the biosynthesis of extracellular polysaccharides which are major
 
           immunogenic components of the bacterial cell envelope. They further mentioned that GlmM is required for the
 
           immunogenic components of the bacterial cell envelope. They further mentioned that GlmM is required for the
 
           synthesis of UDP-D-GlcpNAc.
 
           synthesis of UDP-D-GlcpNAc.
 
           <br/><br/>
 
           <br/><br/>
           Importance: There are several studies stating that glmM encodes for the formation of cell wall precursors, and
+
           <b>Importance:</b> There are several studies stating that <i>glmM </i>encodes for the formation of cell wall precursors, and
 
           it has been detected as one of the top features in the case of Ceftriaxone which also works with the mechanism
 
           it has been detected as one of the top features in the case of Ceftriaxone which also works with the mechanism
 
           of bacterial cell wall synthesis. So, our machine learning algorithm has identified genes involved in the
 
           of bacterial cell wall synthesis. So, our machine learning algorithm has identified genes involved in the
Line 585: Line 834:
  
  
         <h3 class="wiki-h wiki-h3">mshA (Ceftriaxone)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>mshA</b> </i>(Ceftriaxone)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           mshA encodes for D-inositol 3-phosphate glycosyltransferase (UP_mshA).
+
           <i>mshA </i>encodes for D-inositol 3-phosphate glycosyltransferase (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P9WMY7" target="_blank">UP_mshA</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Acetylglucosaminyltransferase activity, transferring glycosyl groups
+
           <b>GO Molecular function</b>: Acetylglucosaminyltransferase activity, transferring glycosyl groups
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Mycothiol biosynthetic process
+
           <b>GO Biological function</b>: Mycothiol biosynthetic process
 
           <br/><br/>
 
           <br/><br/>
           Complete annotation: GO_mshA
+
           <b>Complete annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P9WMY7" target="_blank">GO_mshA</a>
 
           <br/><br/>
 
           <br/><br/>
 
           It is involved in the mechanism of Acetylglucosaminyltransferase which is important for cell wall mechanism as
 
           It is involved in the mechanism of Acetylglucosaminyltransferase which is important for cell wall mechanism as
           mentioned in the case of glmM.
+
           mentioned in the case of <i>glmM</i>.
 
           <br/><br/>
 
           <br/><br/>
 
           The Comprehensive Antibiotic Resistance Database (CARD) provides several evidences for the involvement of mshA
 
           The Comprehensive Antibiotic Resistance Database (CARD) provides several evidences for the involvement of mshA
           in antibiotics targeting cell wall mechanisms. Mutations in mshA result in the inactivation of antibiotics and
+
           in antibiotics targeting cell wall mechanisms. Mutations in <i>mshA </i>result in the inactivation of antibiotics and
           it works by the mechanism of antibiotic target alteration (CARD1_mshA).
+
           it works by the mechanism of antibiotic target alteration (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/43086" target="_blank">CARD1_mshA</a>).
 
           <br/><br/>
 
           <br/><br/>
           As mentioned above, mshA is glycosyltransferase and is involved in the first step of mycothiol biosynthesis.
+
           As mentioned above, <i>mshA </i>is glycosyltransferase and is involved in the first step of mycothiol biosynthesis.
           This is a step that is required for growth in M. tuberculosis and resistance has been in the gene to
+
           This is a step that is required for growth in <i>M. tuberculosis</i> and resistance has been in the gene to
           isoniazid, which is antibiotic inhibiting mycobacterial cell wall (CARD2_mshA). Further, the mutations in mshA
+
           isoniazid, which is antibiotic inhibiting mycobacterial cell wall (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/43087" target="_blank">CARD2_mshA</a>). Further, the mutations in mshA
           confer resistance to isoniazid in M. tuberculosis (CARD3_mshA).
+
           confer resistance to isoniazid in <i>M. tuberculosis</i> (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/43111" target="_blank">CARD3_mshA</a>).
 
           <br/><br/>
 
           <br/><br/>
           Importance: Our machine learning approach identifies allele of mshA as one of the most important features in
+
           <b>Importance:</b> Our machine learning approach identifies allele of <i>mshA </i>as one of the most important features in
 
           predicting resistance phenotype of strain, which in accordance with literature evidence related to mutations
 
           predicting resistance phenotype of strain, which in accordance with literature evidence related to mutations
           in mshA causing antibiotic resistance. Moreover, it has been detected as one of the most important genes in
+
           in <i>mshA </i>causing antibiotic resistance. Moreover, it has been detected as one of the most important genes in
 
           the case of Ceftriaxone, which also works with mechanisms of bacterial cell wall synthesis.
 
           the case of Ceftriaxone, which also works with mechanisms of bacterial cell wall synthesis.
 
         </p>
 
         </p>
  
         <h3 class="wiki-h wiki-h3">relE (Imipenem)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>relE</b> </i>(Imipenem)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
  
           relE encodes for mRNA interferase toxin RelE (UP_relE).
+
           <i>relE </i>encodes for mRNA interferase toxin RelE (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0C077" target="_blank">UP_relE</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: DNA-binding transcription repressor activity, ribosome binding, rRNA binding
+
           <b>GO Molecular function</b>: DNA-binding transcription repressor activity, ribosome binding, rRNA binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Cellular response to amino acid starvation, mRNA catabolic process, negative
+
           <b>GO Biological function</b>: Cellular response to amino acid starvation, mRNA catabolic process, negative
 
           regulation of translation
 
           regulation of translation
 
           <br/><br/>
 
           <br/><br/>
           GO Cellular component: Protein-DNA complex
+
           <b>GO Cellular Component</b>: Protein-DNA complex
 
           <br/><br/>
 
           <br/><br/>
  
           Complete GO annotation: GO_relE
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0C077" target="_blank">GO_relE</a>
 
           <br/><br/>
 
           <br/><br/>
           relE encodes for mRNA interferase, and mRNA interferases play a role in bacterial persistence to antibiotics;
+
           <i>relE </i>encodes for mRNA interferase, and mRNA interferases play a role in bacterial persistence to antibiotics;
           overexpression of this protein induces persisters resistant to ciprofloxacin and ampicillin (UP_relE,
+
           overexpression of this protein induces persisters resistant to ciprofloxacin and ampicillin (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0C077" target="_blank">UP_relE</a>,
           Ref1_relE).
+
           <a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/21788497/" target="_blank">Ref1_relE</a>).
 
           <br/><br/>
 
           <br/><br/>
           relE is a part of type II toxin-antitoxin system relBE wherein it is toxin and relB is anti-toxin. In presence
+
           <i>relE </i>is a part of type II toxin-antitoxin system relBE wherein it is toxin and <i>relB</i> is anti-toxin. In presence
           of unfavorable conditions, toxin relE sharply increases persisters (cells that neither grow nor die in the
+
           of unfavorable conditions, toxin <i>relE </i>sharply increases persisters (cells that neither grow nor die in the
 
           presence of bactericidal agents) and are largely responsible for high levels of biofilm tolerance to
 
           presence of bactericidal agents) and are largely responsible for high levels of biofilm tolerance to
           antimicrobials (CARD_relE). So it blocks the process of mRNA to protein conversion inhibiting cell growth. The
+
           antimicrobials (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/40753" target="_blank">CARD_relE</a>). So it blocks the process of mRNA to protein conversion inhibiting cell growth. The
 
           increase in biofilm tolerance makes it difficult for antibiotics to reach the bacteria for necessary action.
 
           increase in biofilm tolerance makes it difficult for antibiotics to reach the bacteria for necessary action.
 
           <br/><br/>
 
           <br/><br/>
           Pourhajibagher et al. (Ref2_relE) utilized the concept of this toxin-antitoxin system, relBE, for designing
+
           Pourhajibagher <i>et al.</i> (<a class="wiki-a" href="https://www.derpharmachemica.com/pharma-chemica/in-silico-modeling-of-releb-type-ii-toxinantitoxin-system-in-acinetobacter-baumannii-as-a-therapeutic-target-via-antimicrobial-pho-14977.html" target="_blank">Ref2_relE</a>) utilized the concept of this toxin-antitoxin system, relBE, for designing
 
           Antimicrobial Photodynamic Therapy as an alternative to conventional antibiotic therapy using in-silico
 
           Antimicrobial Photodynamic Therapy as an alternative to conventional antibiotic therapy using in-silico
 
           modeling and bioinformatics analysis.
 
           modeling and bioinformatics analysis.
 
           <br/><br/>
 
           <br/><br/>
           Importance: There are several studies indicating the involvement of relE in being responsible for antibiotic
+
           <b>Importance:</b> There are several studies indicating the involvement of <i>relE </i>in being responsible for antibiotic
           resistance, so it makes it interesting to look for its relevance in the case of A. baumannii using wet-lab
+
           resistance, so it makes it interesting to look for its relevance in the case of <i>A. baumannii</i> using wet-lab
 
           experiments.
 
           experiments.
 
         </p>
 
         </p>
  
         <h3 class="wiki-h wiki-h3">tufA (Imipenem)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>tufA</b> </i>(Imipenem)</h4>
  
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           tufA encodes for the Elongation factor Tu 1 (UP_tufA).
+
           <i>tufA </i>encodes for the Elongation factor Tu 1 (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0CE47" target="_blank">UP_tufA</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: GTPase activity, GTP binding
+
           <b>GO Molecular function</b>: GTPase activity, GTP binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Translational elongation, Response to antibiotic and Antibiotic Resistance.
+
           <b>GO Biological function</b>: Translational elongation, Response to antibiotic and Antibiotic Resistance.
 
           <br/><br/>
 
           <br/><br/>
           Complet GO annotation: GO_tufA
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0CE47" target="_blank">GO_tufA</a>
 
           <br/><br/>
 
           <br/><br/>
           The study conducted by Koenigs et al. (Ref1_tufA) showed for the first time that A. baumannii binds to
+
           The study conducted by Koenigs <i>et al.</i> (<a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/26230848/" target="_blank">Ref1_tufA</a>) showed for the first time that <i>A. baumannii</i> binds to
 
           host-derived plasminogen with help of the translation elongation factor Tuf as a moonlighting
 
           host-derived plasminogen with help of the translation elongation factor Tuf as a moonlighting
           plasminogen-binding protein that is exposed on the outer surface of A. baumannii. This binding phenomenon is
+
           plasminogen-binding protein that is exposed on the outer surface of <i>A. baumannii</i>. This binding phenomenon is
 
           at least partly dependent on lysine residues and ionic interactions. Once bound to Tuf, plasminogen can be
 
           at least partly dependent on lysine residues and ionic interactions. Once bound to Tuf, plasminogen can be
 
           converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component
 
           converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component
 
           C3b. Therefore they concluded that Tuf acts as a multifunctional protein that may contribute to the virulence
 
           C3b. Therefore they concluded that Tuf acts as a multifunctional protein that may contribute to the virulence
           of A. baumannii by aiding in dissemination and evasion of the complement system.
+
           of <i>A. baumannii</i> by aiding in dissemination and evasion of the complement system.
 
           <br/><br/>
 
           <br/><br/>
           Importance: The results of the above study clearly indicates the importance of Tuf protein is increasing and
+
           <b>Importance:</b> The results of the above study clearly indicates the importance of Tuf protein is increasing and
           contributing to the virulence of A. baumannii. It would be interesting to explore more about the functioning
+
           contributing to the virulence of <i>A. baumannii</i>. It would be interesting to explore more about the functioning
 
           and mechanism of this protein in the context of our novel protein-based drug-using wet-lab experiments.
 
           and mechanism of this protein in the context of our novel protein-based drug-using wet-lab experiments.
 
         </p>
 
         </p>
  
         <h3 class="wiki-h wiki-h3">yafQ (Ceftazidime)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>yafQ</b> </i>(Ceftazidime)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           yafQ encodes for mRNA interferase toxin YafQ (UP_yafQ)
+
           <i>yafQ </i>encodes for mRNA interferase toxin YafQ (<a class="wiki-a" href="https://www.uniprot.org/uniprot/Q47149" target="_blank">UP_yafQ</a>)
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: DNA binding, ribosome binding
+
           <b>GO Molecular function</b>: DNA binding, ribosome binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: mRNA catabolic process, response to antibiotic
+
           <b>GO Biological function</b>: mRNA catabolic process, response to antibiotic
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_yafQ
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q47149" target="_blank">GO_yafQ</a>
 
           <br/><br/>
 
           <br/><br/>
           yafQ is working in a similar mechanism that of relE i.e. working as a toxin-antitoxin pair. YafQ protein pairs
+
           <i>yafQ </i>is working in a similar mechanism that of <i>relE </i><i>i.e.</i> working as a toxin-antitoxin pair. YafQ protein pairs
 
           with DinJ. which seems to play a role in biofilm formation. mRNA interferases play a role in bacterial
 
           with DinJ. which seems to play a role in biofilm formation. mRNA interferases play a role in bacterial
           persistence to antibiotics (UP_yafQ). Since it helps in biofilm formation and biofilm can decrease the amount
+
           persistence to antibiotics (<a class="wiki-a" href="https://www.uniprot.org/uniprot/Q47149" target="_blank">UP_yafQ</a>). Since it helps in biofilm formation and biofilm can decrease the amount
 
           of antibiotics reaching the bacterial cell, therefore it is indirectly responsible for increasing antibiotic
 
           of antibiotics reaching the bacterial cell, therefore it is indirectly responsible for increasing antibiotic
 
           resistance.
 
           resistance.
 
           <br/><br/>
 
           <br/><br/>
           Importance: It has not been explored much in the literature, and it would be really interesting to explore its
+
           <b>Importance:</b> It has not been explored much in the literature, and it would be really interesting to explore its
           working in the context of A. baumannii along with relE as well.
+
           working in the context of <i>A. baumannii</i> along with <i>relE </i>as well.
 
         </p>
 
         </p>
  
         <h3 class="wiki-h wiki-h3">eptA (Ceftazidime)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>eptA</b> </i>(Ceftazidime)</h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           eptA encodes Phosphoethanolamine transferase EptA (UP_eptA).
+
           <i>eptA </i>encodes Phosphoethanolamine transferase EptA (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P30845" target="_blank">UP_eptA</a>).
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: phosphotransferase activity, sulfuric ester hydrolase activity
+
           <b>GO Molecular function</b>: phosphotransferase activity, sulfuric ester hydrolase activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Lipid A biosynthesis, Antibiotic Resistance
+
           <b>GO Biological function</b>: Lipid A biosynthesis, Antibiotic Resistance
 
           <br/><br/>
 
           <br/><br/>
  
           Complete GO annotation: GO_eptA
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P30845" target="_blank">GO_eptA</a>
 
           <br/><br/>
 
           <br/><br/>
           As per the Comprehensive Antibiotic Resistance Database (CARD), eptA mediates the modification Lipid A by the
+
           As per the Comprehensive Antibiotic Resistance Database (CARD), <i>eptA </i>mediates the modification Lipid A by the
 
           addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine which results in a less negative
 
           addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine which results in a less negative
 
           cell membrane and decreased binding of polymyxin B. It works by the mechanism of antibiotic target alteration
 
           cell membrane and decreased binding of polymyxin B. It works by the mechanism of antibiotic target alteration
           (CARD_eptA).
+
           (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/40186" target="_blank">CARD_eptA</a>).
 
           <br/><br/>
 
           <br/><br/>
           The study conducted by Gerson et al. (Ref1_eptA) concluded that mutations in eptA were associated with
+
           The study conducted by Gerson <i>et al.</i> (<a class="wiki-a" href="https://aac.asm.org/content/63/3/e01586-18" target="_blank">Ref1_eptA</a>) concluded that mutations in <i>eptA </i>were associated with
           colistin resistance in A. baumannii. Trebsoc et al. (Ref2_eptA) suggested that direct targeting of the
+
           colistin resistance in <i>A. baumannii</i>. Trebosc <i>et al.</i> (<a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635527/" target="_blank">Ref2_eptA</a>) suggested that direct targeting of the
           homologous PetN transferases PmrC/EptA may have the potential to overcome colistin resistance in A. baumannii.
+
           homologous PetN transferases PmrC/EptA may have the potential to overcome colistin resistance in <i>A. baumannii</i>.
 
           <br/><br/>
 
           <br/><br/>
           Importance: eptA has been known to provide resistance to polymyxin B which works with the mechanism of
+
           <b>Importance:</b> <i>eptA </i>has been known to provide resistance to polymyxin B which works with the mechanism of
 
           membrane disruption. It has been identified as one of the top genes for Ceftazidime which also works with the
 
           membrane disruption. It has been identified as one of the top genes for Ceftazidime which also works with the
 
           mechanism of cell wall synthesis. Further, it has been studied to play a role in colistin resistance which
 
           mechanism of cell wall synthesis. Further, it has been studied to play a role in colistin resistance which
 
           makes it very important and interesting to check for the efficacy of our novel protein-based drug against
 
           makes it very important and interesting to check for the efficacy of our novel protein-based drug against
           eptA.
+
           <i>eptA</i>.
 
         </p>
 
         </p>
 +
 +
        <br/><br/><br/>
 +
       
 
       </div>
 
       </div>
  
Line 730: Line 982:
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           Mechanism: Sulfamethoxazole inhibits bacterial synthesis of dihydrofolic acid by competing with
+
           <b>Mechanism</b>: Sulfamethoxazole inhibits bacterial synthesis of dihydrofolic acid by competing with
 
           para-aminobenzoic acid (PABA). Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic
 
           para-aminobenzoic acid (PABA). Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic
 
           acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. So, in a nutshell,
 
           acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. So, in a nutshell,
Line 739: Line 991:
  
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">folP</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>folP</b> </i></h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           folP encodes for Dihydropteroate synthase (UP_folP)
+
           <i>folP </i>encodes for Dihydropteroate synthase (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0AC13" target="_blank">UP_folP</a>)
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Dihydropteroate synthase activity, and metal ion binding
+
           <b>GO Molecular function</b>: Dihydropteroate synthase activity, and metal ion binding
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Folate biosynthesis and Response to drug
+
           <b>GO Biological function</b>: Folate biosynthesis and Response to drug
 
           <br/><br/>
 
           <br/><br/>
           GO Cellular component: Cytoplasm and Cytosol
+
           <b>GO Cellular Component</b>: Cytoplasm and Cytosol
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_folP
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P0AC13" target="_blank">GO_folP</a>
 
           <br/><br/>
 
           <br/><br/>
  
 
           The protein Dihydropteroate synthase catalyzes the condensation of para-aminobenzoate (PABA) with
 
           The protein Dihydropteroate synthase catalyzes the condensation of para-aminobenzoate (PABA) with
 
           6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8-dihydropteroate (H2Pte), the immediate
 
           6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8-dihydropteroate (H2Pte), the immediate
           precursor of folate derivatives (UP_folP).
+
           precursor of folate derivatives (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P0AC13" target="_blank">UP_folP</a>).
 
           <br/><br/>
 
           <br/><br/>
 
           As per the Comprehensive Antibiotic Resistance Database (CARD), point mutations in dihydropteroate synthase,
 
           As per the Comprehensive Antibiotic Resistance Database (CARD), point mutations in dihydropteroate synthase,
           folP prevent sulfonamide antibiotics from inhibiting its role in folate synthesis, thus conferring sulfonamide
+
           <i>folP </i>prevent sulfonamide antibiotics from inhibiting its role in folate synthesis, thus conferring sulfonamide
           resistance (CARD_folP). It works with the mechanism of antibiotic target alteration. Our machine learning
+
           resistance (<a class="wiki-a" href="https://card.mcmaster.ca/ontology/36365" target="_blank">CARD_folP</a>). It works with the mechanism of antibiotic target alteration. Our machine learning
           approach identified folP and its alleles as the topmost important features which further validate the efficacy
+
           approach identified <i>folP </i>and its alleles as the topmost important features which further validate the efficacy
 
           of our algorithm.
 
           of our algorithm.
 
           <br/><br/>
 
           <br/><br/>
           Importance: The detection of folP in the case of antibiotics working with folate disruption by machine
+
           <b>Importance:</b> The detection of <i>folP </i>in the case of antibiotics working with folate disruption by our machine
 
           learning algorithm is a very important indication for the efficacy of the approach. It would be very
 
           learning algorithm is a very important indication for the efficacy of the approach. It would be very
           interesting to check for the impact of folP in establishing resistance to our novel protein-based drug.
+
           interesting to check for the impact of <i>folP </i>in establishing resistance to our novel protein-based drug.
 
         </p>
 
         </p>
 
       </div>
 
       </div>
Line 779: Line 1,031:
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           Mechanism: Ampicillin/sulbactam is a combination of a β-lactam antibiotic and a β-lactamase inhibitor.
+
           <b>Mechanism</b>: Ampicillin/Sulbactam is a combination of a β-lactam antibiotic and a β-lactamase inhibitor.
 
           Ampicillin works by binding to penicillin-binding proteins (PBPs) to inhibit bacterial cell wall synthesis.
 
           Ampicillin works by binding to penicillin-binding proteins (PBPs) to inhibit bacterial cell wall synthesis.
 
           Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the
 
           Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the
Line 789: Line 1,041:
  
 
         </p>
 
         </p>
         <h3 class="wiki-h wiki-h3">bla</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><i><b>bla</b> </i></h4>
 
         <p class="wiki-p">
 
         <p class="wiki-p">
           bla encodes for Beta-lactamase TEM
+
           <i>bla </i>encodes for Beta-lactamase TEM
 
           <br/><br/>
 
           <br/><br/>
           GO Molecular function: Beta-lactamase activity
+
           <b>GO Molecular function</b>: Beta-lactamase activity
 
           <br/><br/>
 
           <br/><br/>
           GO Biological function: Beta-lactam antibiotic catabolic process, response to antibiotic and Antibiotic
+
           <b>GO Biological function</b>: Beta-lactam antibiotic catabolic process, response to antibiotic and Antibiotic
 
           resistance
 
           resistance
 
           <br/><br/>
 
           <br/><br/>
           Complete GO annotation: GO_bla
+
           <b>Complete GO annotation</b>: <a class="wiki-a" href="https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P62593" target="_blank">GO_bla</a>
 
           <br/><br/>
 
           <br/><br/>
 
           TEM-type is the most prevalent beta-lactamases in Enterobacteriaceae; they hydrolyze the beta-lactam bond in
 
           TEM-type is the most prevalent beta-lactamases in Enterobacteriaceae; they hydrolyze the beta-lactam bond in
           susceptible beta-lactam antibiotics, thus conferring resistance to these antibiotics (UP_bla).
+
           susceptible beta-lactam antibiotics, thus conferring resistance to these antibiotics (<a class="wiki-a" href="https://www.uniprot.org/uniprot/P62593" target="_blank">UP_bla</a>).
 
           <br/><br/>
 
           <br/><br/>
           The study conducted by Subramaniyan and Sundaram (Ref1_bla) concluded the presence of bla genes in
+
           The study conducted by Subramaniyan and Sundaram (<a class="wiki-a" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896190/" target="_blank">Ref1_bla</a>) concluded the presence of <i>bla </i>genes in
           carbapenem-resistant P. aeruginosa and A. baumannii isolated from clinical settings, Intensive Care Unit
+
           carbapenem-resistant <i>P. aeruginosa </i>and <i>A. baumannii</i> isolated from clinical settings, Intensive Care Unit
           (ICU). Further, the study by Kumar et al. (Ref2_bla) analyzed the carbapenem-resistant A. baumannii isolates
+
           (ICU). Further, the study by Kumar <i>et al.</i> (<a class="wiki-a" href="https://pubmed.ncbi.nlm.nih.gov/31362071/" target="_blank">Ref2_bla</a>) analyzed the carbapenem-resistant <i>A. baumannii</i> isolates
           from two tertiary care hospitals of North India and concluded that bla encoding clones. It is an important
+
           from two tertiary care hospitals of North India and concluded that <i>bla </i>encoding clones. It is an important
           discovery especially in the context of India hospital settings.
+
           discovery especially in the context of hospital settings in India.
 
           <br/><br/>
 
           <br/><br/>
           Importance: Our machine learning algorithm identifies bla as the most important feature, which is also in the
+
           <b>Importance:</b> Our machine learning algorithm identifies <i>bla </i>as the most important feature, which is also in the
 
           mechanism of Ampicillin and Sulbactam. It shows the efficacy of our approach. Moreover, the above studies
 
           mechanism of Ampicillin and Sulbactam. It shows the efficacy of our approach. Moreover, the above studies
           clearly indicate the importance of bla gene in A. baumannii and it would be surely interesting to check for
+
           clearly indicate the importance of <i>bla </i>gene in <i>A. baumannii</i> and it would be surely interesting to check for
 
           its relevance in the case of our novel protein-based drug.
 
           its relevance in the case of our novel protein-based drug.
 
         </p>
 
         </p>
 +
 +
        <br/><br/><br/>
 +
       
 
       </div>
 
       </div>
 +
 +
      <br/><br/>
 +
 
       <h2 class="wiki-h wiki-h2 wiki-section-start" id="wiki_section_2">
 
       <h2 class="wiki-h wiki-h2 wiki-section-start" id="wiki_section_2">
 +
 
         Correlation and mutational analysis of gene-gene pair
 
         Correlation and mutational analysis of gene-gene pair
       </h2>
+
       </h2><br/>
  
 
       <!--dropdown6-->
 
       <!--dropdown6-->
Line 828: Line 1,087:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <h3 class="wiki-h wiki-h3">xerC vs. ssuC (Ciprofloxacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>xerC</i> - <i>ssuC</i></b> (Ciprofloxacin)</h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="../assets/images/images/ML_Results_ciprofloxacin_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/d/d1/T--IIT_Roorkee--Poster_images--images--ML_Results_ciprofloxacin_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance increases with mutations in xerC</li>
+
           <li>Resistance increases with mutations in <i>xerC</i></li>
           <li>Resistance increases with mutations in ssuC</li>
+
           <li>Resistance increases with mutations in <i>ssuC</i></li>
 
           <li>The increase in resistance with mutations in both genes confirm a positive correlation between them</li>
 
           <li>The increase in resistance with mutations in both genes confirm a positive correlation between them</li>
           <li>Mutations in xerC are accompanied by an increase in resistance for all of the following, ssuC_1, ssuC_2,
+
           <li>Mutations in <i>xerC </i>are accompanied by an increase in resistance for all of the following, <i>ssuC_1</i>, <i>ssuC_2</i>,
             ssuC_3, ssuC_4 and ssuC_5</li>
+
             <i>ssuC_3</i>, <i>ssuC_4</i> and <i>ssuC_5</i></li>
 
         </ol>
 
         </ol>
  
         <h3 class="wiki-h wiki-h3">puuP vs. astC (Levofloxacin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>puuP</i> - <i>astC</i></b> (Levofloxacin)</h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/6/6c/T--IIT_Roorkee--images--images--ML_Results_levofloxacin_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/c/c5/T--IIT_Roorkee--Poster_images--images--ML_Results_levofloxacin_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>astC is a gene important for resistance but strains became more susceptible in presence of puuP</li>
+
           <li><i>astC</i> is a gene important for resistance but strains became more susceptible in presence of <i>puuP</i></li>
           <li>Mutations in astC causes a decrease in resistance </li>
+
           <li>Mutations in <i>astC</i> causes a decrease in resistance </li>
           <li>Mutations in astC increase resistance in presence of puuP but decrease resistance with mutations in puuP
+
           <li>Mutations in <i>astC</i> increase resistance in presence of <i>puuP </i>but decrease resistance with mutations in <i>puuP</i>
 
             which confirms a negative correlation</li>
 
             which confirms a negative correlation</li>
 
         </ol>
 
         </ol>
Line 861: Line 1,120:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <h3 class="wiki-h wiki-h3">emrE vs. folP (Gentamicin)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>emrE</i> - <i>folP</i></b> (Gentamicin)</h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/e/ef/T--IIT_Roorkee--images--images--ML_Results_gentamicin_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/0/05/T--IIT_Roorkee--Poster_images--images--ML_Results_gentamicin_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance increases with mutations in emrE</li>
+
           <li>Resistance increases with mutations in <i>emrE</i></li>
           <li>Resistance increases with mutations in folP</li>
+
           <li>Resistance increases with mutations in<i> folP</i></li>
 
           <li>Mutations in both the genes work in tandem and increase the resistance of strains confirming a positive
 
           <li>Mutations in both the genes work in tandem and increase the resistance of strains confirming a positive
 
             correlation between them</li>
 
             correlation between them</li>
Line 873: Line 1,132:
 
         </ol>
 
         </ol>
  
         <h3 class="wiki-h wiki-h3">cysL vs. hcaR (Tobramycin) </h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>cysL</i>- <i>hcaR</i></b> (Tobramycin) </h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/5/5b/T--IIT_Roorkee--images--images--ML_Results_tobramycin_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/a/aa/T--IIT_Roorkee--Poster_images--images--ML_Results_tobramycin_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance increases with mutations in cysL</li>
+
           <li>Resistance increases with mutations in <i>cysL</i></li>
           <li>Resistance decreases with mutations in hcaR</li>
+
           <li>Resistance decreases with mutations in <i>hcaR</i></li>
           <li>Mutations in hcaR increases the resistance but not when cysL is present confirming a negative correlation
+
           <li>Mutations in <i>hcaR </i>increases the resistance but not when <i>cysL </i>is present confirming a negative correlation
 
           </li>
 
           </li>
 
         </ol>
 
         </ol>
  
         <h3 class="wiki-h wiki-h3">esiB vs. cspV (Amikacin) </h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>esiB</i> - <i>cspV</i></b> (Amikacin) </h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/a/a4/T--IIT_Roorkee--images--images--ML_Results_amikacin_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/9/9d/T--IIT_Roorkee--Poster_images--images--ML_Results_amikacin_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance decreases with mutations in esiB</li>
+
           <li>Resistance decreases with mutations in <i>esiB</i></li>
           <li>Resistance decreases with mutations in cspV</li>
+
           <li>Resistance decreases with mutations in <i>cspV</i></li>
           <li>Resistance in strains with cspV decreases or reaches zero with mutations in esiB confirming a positive
+
           <li>Resistance in strains with <i><i>cspV</i> </i>decreases or reaches zero with mutations in <i>esiB </i>confirming a positive
 
             correlation</li>
 
             correlation</li>
 
         </ol>
 
         </ol>
Line 906: Line 1,165:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <h3 class="wiki-h wiki-h3">ssuA vs. ssuC (Ceftriaxone) </h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>ssuA</i> - <i>ssuC </i></b>(Ceftriaxone) </h4>
 +
 
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/3/3c/T--IIT_Roorkee--images--images--ML_Results_ceftriaxone_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/6/6e/T--IIT_Roorkee--Poster_images--images--ML_Results_ceftriaxone_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>There is lack of strains having ssuA and ssuC genes without mutations</li>
+
           <li>There is lack of strains having <i>ssuA</i> and <i>ssuC </i>genes without mutations</li>
           <li>Resistance increases with mutations in ssuA</li>
+
           <li>Resistance increases with mutations in <i>ssuA</i></li>
           <li>Resistance increases with mutations in ssuC which confirms a positive correlation between genes</li>
+
           <li>Resistance increases with mutations in <i>ssuC</i> which confirms a positive correlation between genes</li>
  
 
         </ol>
 
         </ol>
  
         <h3 class="wiki-h wiki-h3">tufA vs. tufB (Imipenem)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>tufA</i> - <i>tufB </i></b>(Imipenem)</h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
 
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/d/d1/T--IIT_Roorkee--images--images--ML_Results_imipenem_analysis.png"/>
 
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/d/d1/T--IIT_Roorkee--images--images--ML_Results_imipenem_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance decreases with mutations in tufA </li>
+
           <li>Resistance decreases with mutations in <i>tufA </i></li>
           <li>Resistance increases with mutations in tufB confirming a negative correlation between genes</li>
+
           <li>Resistance increases with mutations in <i>tufB </i>confirming a negative correlation between genes</li>
  
 
         </ol>
 
         </ol>
  
         <h3 class="wiki-h wiki-h3">aphA vs. fatA (Ceftazidime)</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>aphA</i> - <i>fatA </i></b>(Ceftazidime)</h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="../assets/images/images/ML_Results_ceftazidine_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/c/ca/T--IIT_Roorkee--Poster_images--images--ML_Results_ceftazidime_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance increases with mutations in aphA</li>
+
           <li>Resistance increases with mutations in <i>aphA</i></li>
           <li>Resistance increases with mutations in fatA which confirms a positive correlation between genes</li>
+
           <li>Resistance increases with mutations in <i>fatA </i>which confirms a positive correlation between genes</li>
           <li>There is less number of strains having fatA gene and much more number of strains with mutations in fatA
+
           <li>There is less number of strains having <i>fatA </i>gene and much more number of strains with mutations in <i>fatA</i>
 
           </li>
 
           </li>
 
         </ol>
 
         </ol>
Line 948: Line 1,208:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <h3 class="wiki-h wiki-h3">folP vs. emrE</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>folP</i> - <i>emrE</i></b></h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/7/71/T--IIT_Roorkee--images--images--ML_Results_t%2Bs_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/a/ab/T--IIT_Roorkee--Poster_images--images--ML_Results_t%2Bs_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance increases with mutations in folP</li>
+
           <li>Resistance increases with mutations in<i> folP</i></li>
           <li>Resistance increases with mutations in emrE confirming a positive correlation between genes</li>
+
           <li>Resistance increases with mutations in <i>emrE </i>confirming a positive correlation between genes</li>
           <li>There is less number of strains with folP and more number of strains with mutations in folP</li>
+
           <li>There is less number of strains with <i>folP </i>and more number of strains with mutations in<i> folP</i></li>
 
+
 
         </ol>
 
         </ol>
 
       </div>
 
       </div>
Line 971: Line 1,230:
 
       </button>
 
       </button>
 
       <div class="wiki-collapsed-content">
 
       <div class="wiki-collapsed-content">
         <h3 class="wiki-h wiki-h3">mobA vs. yddG</h3>
+
         <br/><br/><h4 class="wiki-h wiki-h4"><b><i>mobA</i> - <i>yddG</i></b></h4>
 
         <div class="wiki-graphic">
 
         <div class="wiki-graphic">
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/3/33/T--IIT_Roorkee--images--images--ML_Results_a%2Bs_analysis.png"/>
+
           <img alt="" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/3/37/T--IIT_Roorkee--Poster_images--images--ML_Results_a%2Bs_analysis.png"/>
 
         </div>
 
         </div>
 
         <ol class="wiki-ol">
 
         <ol class="wiki-ol">
           <li>Resistance decreases with mutations in mobA</li>
+
           <li>Resistance decreases with mutations in <i>mobA</i></li>
           <li>Resistance increases with mutations in yddG confirming a negative correlation between genes</li>
+
           <li>Resistance increases with mutations in <i>yddG </i>confirming a negative correlation between genes</li>
           <li>Increased resistance due to mutations in yddG vanished with mutations in mobA</li>
+
           <li>Increased resistance due to mutations in <i>yddG </i>vanished with mutations in <i>mobA</i></li>
  
 
         </ol>
 
         </ol>
Line 984: Line 1,243:
  
  
 +
      <br/><br/><br/>
  
 
+
        
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
       <!--DELETE THIS CONTENT AFTER YOU ARE DONE-->
+
      <!--THIS IS COPIED FROM SOME OTHER PAGE JUST FOR REFERENCE-->
+
      <!--I have added a comment down to mention upto where you have to remove-->
+
      <h1>Garbage Content</h1>
+
      <h2 class="wiki-h wiki-h2 wiki-section-start" id="blank_1"></h2>
+
      <p class="wiki-p">
+
        Machine learning refers to the study of computer algorithms that tend
+
        to improve its performance automatically with experience without being
+
        explicitly programmed. Over the past decade, machine learning has been
+
        applied to perform several complex tasks such as image classification
+
        and object recognition. We decided to explore its applications in helping
+
        to overcome the problem of antibiotic resistance, a major threat to the
+
        human population. The availability of large public datasets makes it
+
        crucial and important to utilize the power of machine learning in
+
        understanding and predicting biological phenomena such as antibiotic resistance.
+
      </p>
+
 
+
      <p class="wiki-p">
+
        To this end, we have used a class of machine learning algorithms called
+
        Support Vector Machines in understanding and uncovering the genetic
+
        interaction when a bacterial strain is treated with a particular antibiotic.
+
        We identified <i>Acinetobacter baumannii</i> as a critical priority pathogen according
+
        to the World Health Organisation as our target pathogen of interest.
+
      </p>
+
 
+
      <div class="wiki-graphic">
+
        <img alt="ML_Model" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/9/9e/T--IIT_Roorkee--images--images--ML_model_higher.png"/>
+
      </div>
+
      <br/><br/><br/><br/><br/>
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step_1">Step 1: Data Collection</h3>
+
      <p class="wiki-p">
+
        We utilized and selected 1360 strains of <i><i>A. Baumannii</i></i> whose AMR phenotypic data was available
+
        in the PATRIC database [1]. The testing data includes the outcome when the strain is treated
+
        with a particular antibiotic. The outcome can be binary i.e. strain can be either resistant or
+
        susceptible to the antibiotic. Strains with verified phenotypes from laboratory data were selected
+
        for the analysis, thus excluding strains that were validated only via computational methods.
+
      </p>
+
 
+
      <p class="wiki-p">
+
        We choose 10 different antibiotics to understand the influence of genetic information on
+
        resistance phenotype when different strains are treated with these drugs. The different
+
        antibiotics are as follows,
+
      </p>
+
 
+
      <div class="table-responsive">
+
        <table class="table table-hover table-bordered">
+
          <thead class="thead-dark">
+
            <tr>
+
              <th scope="col">Antibiotic</th>
+
              <th scope="col">Mechanism</th>
+
            </tr>
+
          </thead>
+
          <tbody>
+
            <tr>
+
              <td>Ciprofloxacin</td>
+
              <td rowspan="2">DNA Replication</td>
+
            </tr>
+
 
+
            <tr>
+
              <td>Levofloxacin</td>
+
            </tr>
+
 
+
 
+
 
+
            <tr>
+
              <td>Gentamicin</td>
+
              <td rowspan="3">Protein Synthesis</td>
+
            </tr>
+
 
+
            <tr>
+
              <td>Tobramycin</td>
+
            </tr>
+
 
+
            <tr>
+
              <td>Amikacin</td>
+
            </tr>
+
            <tr>
+
              <td>Ceftriaxone</td>
+
              <td rowspan="3">Cell Wall Synthesis</td>
+
            </tr>
+
 
+
            <tr>
+
              <td>Imipenem</td>
+
            </tr>
+
 
+
            <tr>
+
              <td>Ceftazidime</td>
+
            </tr>
+
 
+
 
+
 
+
            <tr>
+
              <td>Trimethoprim+Sulfamethoxazole</td>
+
              <td>Folate disruption</td>
+
            </tr>
+
 
+
 
+
 
+
            <tr>
+
              <td>Ampicillin+Sulbactam</td>
+
              <td>Cell Wall Synthesis</td>
+
            </tr>
+
          </tbody>
+
        </table>
+
      </div><br/><br/><br/><br/>
+
 
+
 
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step_2">Step 2: Genome Annotation</h3>
+
      <p class="wiki-p">
+
        The genomes of the strains were then annotated to develop a pan-genome which is the
+
        entire set of genes present in all the selected strains. The genome annotation was
+
        carried out using Prokka software [2] which is used for prokaryotic genome annotations.
+
        This software was able to identify and annotate alleles as well as their respective genes.
+
        The software is publicly available at,
+
        <a class="wiki-a" href="https://github.com/tseemann/prokka">https://github.com/tseemann/prokka</a>.
+
        We utilized the bioconda channel of the conda environment to run the software.
+
      </p><br/><br/><br/><br/>
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step_3">Step 3: Binarization</h3>
+
      <p class="wiki-p">
+
        After the formation of the pan-genome and getting the list of all genes and alleles present
+
        in all the strains, we created a binary matrix with each row representing a particular strain
+
        and each column representing a particular gene/allele. If a particular strain has that particular
+
        gene/allele, the value at that position in the matrix is 1, else 0. In simpler terms, if there
+
        are ‘n’ number of genes/alleles in the pan-genome, we represent each strain as a vector of ‘n’
+
        dimensions wherein a particular index of the vector refers to a gene/allele. The value at a
+
        particular index if gene/allele corresponding to that index is present in the strain.
+
        The strains are referred to as examples, while genes/alleles are referred to as features.
+
      </p>
+
      <p class="wiki-p">
+
        Along with representing the strains in terms of binary vectors,
+
        we also collected the phenotype information of strains for a particular
+
        antibiotic. So at this stage, we have vector representation of strain i.e.
+
        input and phenotype of strain i.e. output ready. The machine learning algorithm
+
        will be developed to predict the phenotype of strain using gene/allele vector
+
        representation of strains. We have used Support Vector Machines (SVMs) as a
+
        machine learning algorithm.
+
      </p><br/><br/><br/><br/>
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step_4">Step 4: SVM Training</h3>
+
      <h5 class="wiki-h wiki-h5">Support Vector Machines (SVM)</h5>
+
      <p class="wiki-p">
+
        SVM [3] is a supervised machine learning algorithm which is mainly used for analyzing the
+
        data for the classification task. The algorithm represents all the examples of different
+
        labels in higher-dimensional space, the number of dimensions of this space is usually the
+
        number of features which are the number of genes/alleles in this case. Here in our case,
+
        the SVM algorithm represents the strains in ‘n’ dimensional space where ‘n’ is the number
+
        of genes/alleles in the pan-genome. Each dimension represents a particular gene/allele
+
      </p>
+
      <p class="wiki-p">
+
        After representing the strains in ‘n’ dimensional space, the algorithm tends to find
+
        the most optimal plane which can differentiate between both labels i.e. Resistant and
+
        Susceptible. This optimal plane is also referred to as a hyperplane. The hyperplane is
+
        constructed such that the distance between the hyperplane and the nearest example
+
        represented in the space is maximized.<br/>
+
        The illustration about the working of SVM is shown in the above figure, wherein
+
        the samples are represented in two-dimensional space using two alleles for the sake of simplicity .
+
        However in reality, the space is occupied in ‘n’ dimensions. Different hyperplanes are shown
+
        which act as the decision boundary for predicting the phenotype, i.e. labels on either side
+
        of this boundary will be different. The decision boundary can never be perfect but SVM tries
+
        to achieve the most optimal decision boundary based on the examples given.
+
      </p><br/><br/><br/><br/>
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step5">Step 5: Computation of Weights</h3>
+
      <p class="wiki-p">
+
        The type of SVM algorithm used in our case is Linear SVM i.e. the hyperplane is a
+
        linear boundary or the hyperplane is a linear function of features. As in our case,
+
        there are ‘n’ features representing a particular strain (or example), so the equation
+
        of the hyperplane will be linear and can be represented as,
+
      </p>
+
 
+
      <div class="wiki-graphic">
+
        <img alt="Equation" class="wiki-graphic-image" src="https://static.igem.org/mediawiki/2020/f/ff/T--IIT_Roorkee--images--images--ML_Model_weight_equation_higher.png"/>
+
        <div class="wiki-graphic-reference">wherein, xi refers to the ith gene/allele and wi refers to the linear
+
          coefficient of the ith gene/allele</div>
+
      </div>
+
 
+
      <p class="wiki-p">
+
        This linear coefficient is referred to as the weight of the particular gene/allele and it represents the
+
        quantitative weightage given to the presence/absence of a particular gene/allele while making predictions.
+
        The linear coefficient can be positive or negative, wherein the +/- sign decides the impact of the gene/allele
+
        on the final prediction.
+
      </p>
+
 
+
      <p class="wiki-p">
+
        We trained SVM not for multiple iterations since machine learning algorithms are
+
        probabilistic in nature and they tend to produce a different output each time.
+
        Running the algorithm for more and more number of iterations helps in achieving more stable and reliable
+
        results. We find the hyperplane for each iteration and from where we calculate the weight of the particular
+
        gene/allele and represent them as a matrix as shown in the figure. Each row of the matrix represents a
+
        particular gene/allele while each column represents a particular iteration of the process. The value at a
+
        particular position refers to the weight of the gene/allele in that row during the iteration number of that
+
        column.
+
      </p><br/><br/><br/><br/>
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step6">Step 6: Top AMR alleles</h3>
+
      <p class="wiki-p">
+
        As mentioned above, every gene/allele is given a weightage while developing a hyperplane. The more the
+
        magnitude of the weight, the more is the importance of that gene/allele in predicting the phenotype
+
        of the strain. Since the sign (+/-) of the value of weight merely indicates the direction of impact
+
        of that particular gene/allele i.e. if the sign is negative, it means that the gene/allele is
+
        responsible for shifting the prediction to Susceptible and if the sign is positive, it means that
+
        the gene/allele is responsible for shifting the predicted phenotype to Resistant. So, it is the
+
        magnitude of the weight, which determines the relative importance of different genes/alleles. We
+
        calculated the sum of absolute values of weights given to each gene/allele for every iteration.
+
        The higher the value of this sum, the higher is the relative importance of that gene/allele. We
+
        sorted different genes/alleles in the order of their relative importance based on the sum of
+
        absolute weights and found out the list of top AMR genes/alleles. It is not sure that these
+
        genes/alleles will confer resistance to the antibiotics, they can confer susceptibility to the
+
        antibiotic as well since we have taken the sum of absolute weights neglecting the direction of
+
        impact of that gene/allele. It must be noted that the absolute weights have no mathematical, or
+
        physical, or biological significance, but only provide us an idea about the relative importance
+
        of different weights in predicting resistance or susceptibility. They have no absolute
+
        significance but surely relative importance.
+
      </p><br/><br/><br/><br/>
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step7">Step 7: Correlation analysis</h3>
+
      <p class="wiki-p">
+
        We selected the list of top 40 genes/alleles based on the sum of the absolute weights resulting from the
+
        iterations. Now, since we have the weights of these genes/alleles for each iteration as well, we calculate
+
        the pairwise correlation between the weights of these top 40 genes/alleles. For example let us suppose,
+
        there are ‘k’ iterations, then every gene/allele will have a ‘k’ number of weights i.e. it can be represented
+
        as the vector of ‘k’ dimensions. For finding a correlation between two genes/alleles, we calculated the Pearson
+
        correlation between their corresponding vectors. The positive correlation would mean that an increase in weights
+
        of a particular gene/allele is accompanied by the increase in weights of another gene/allele and vice versa.
+
      </p>
+
      <p class="wiki-p">
+
        These correlation analyses provide us with an idea of the relationship between two genes/alleles which
+
        is further explored while analyzing the impact of a mutation in particular genes on the resistance
+
        phenotype of the strain.
+
      </p><br/><br/><br/><br/>
+
 
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="step8">Step 8: Mutational Analyses</h3>
+
      <p class="wiki-p">
+
        Like in the case of weights given to a particular gene/allele, the sign of the value was merely an indicator
+
        of the direction of its impact on resistance phenotype, similarly, the sign in the case of correlation
+
        between two genes/alleles is also an indicator of the direction of variation of their weights. We
+
        selected the top pair of genes/alleles based on the magnitude of their correlation and analyzed them
+
        for the impact of a mutation in the respective genes on the resistant phenotype. We mainly look for
+
        the cases, for example where a mutation in gene A was responsible for resistance to a particular
+
        antibiotic, but not in the case when another gene B was also present along with mutated gene A.
+
        We performed these analyses for the pairs with the highest correlation values. These help us to
+
        make better conclusions about the relationship between a particular pair of genes/alleles.
+
      </p><br/><br/><br/><br/>
+
 
+
      <h3 class="wiki-h wiki-h3 wiki-section-start" id="References">References</h3>
+
      <p class="wiki-p">
+
      </p><ol class="wiki-ol">
+
 
+
        <li>PATRIC, the bacterial bioinformatics database and analysis resource,
+
          Wattam A. R. et al., Nucleic Acids Research, Database issue (42),
+
          D581-D591 (2013),
+
          <a class="wiki-a" href="https://doi.org/10.1093/nar/gkt1099">DOI: 10.1093/nar/gkt1099</a>
+
        </li>
+
 
+
        <li>Prokka: rapid prokaryotic genome annotation, Seemann T., Bioinformatics, 30(14):2068-9 (2014),
+
          <a class="wiki-a" href="https://doi.org/10.1093/bioinformatics/btu153">DOI: 10.1093/bioinformatics/btu153</a>
+
        </li>
+
 
+
        <li>Support-Vector Networks, Cortes C., Vapnik V., Machine Learning, 20, 273-297 (1995),
+
          <a class="wiki-a" href="https://doi.org/10.1007/BF00994018">DOI: 10.1007/BF00994018</a>
+
        </li>
+
 
+
      </ol>
+
      <p></p><br/><br/><br/><br/><br/>
+
 
+
 
+
      <!--TILL HERE-->
+
      <!--TILL HERE-->
+
      <!--TILL HERE-->
+
      <!--TILL HERE-->
+
      <!--TILL HERE-->
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
  
  
Line 1,446: Line 1,356:
 
     });
 
     });
 
   </script>
 
   </script>
 +
  
  
 
</body></html>
 
</body></html>

Latest revision as of 17:22, 18 December 2020

<!DOCTYPE html> PYOMANCER

Results

We have utilized a machine learning algorithm over the strain-gene/allele dataset of A. baumannii available from the PATRIC database that can predict the resistance phenotype of strains. In nutshell, we have used the presence or absence of particular genes or alleles as features in predicting the phenotype of strain. We have utilized the data of 1360 A. baumannii strains for 10 different antibiotics.








The results of machine learning can be summarized in the following two points

  1. Detection of Genes conferring Antibiotic resistance
  2. Correlation and Mutational analysis of gene-gene pair


Detection of Genes conferring Antibiotic resistance


The machine-learning algorithm has helped in the identification of genes that are either specific to the mechanism of the particular antibiotic or involved in the novel pathway/target. There are few genes that are involved in basic cellular processes that strongly relate to the survival and growth of A. baumannii . The genes corresponding to the particular antibiotic are listed below.

Genes Antibiotic Gene Ontology
Annotations
Mechanism of Action References
esiB Ciprofloxacin
Levofloxacin
GO_esiB Secretory immunoglobulin
A-binding protein
Ref1_esiB
aroP Ciprofloxacin
Levofloxacin
GO_aroP Aromatic amino acid
transport protein
-
tnsB Ciprofloxacin GO_tnsB Transposon Tn7 transposition protein Ref1_tnsB
Ref2_tnsB
xerC Ciprofloxacin GO_xerC Tyrosine recombinase Ref1_xerC
Ref2_xerC
asnC Levofloxacin GO_asnC Regulatory protein, AsnC Ref1_asnC
puuP Levofloxacin GO_puuP Putrescine importer Ref1_puuP
Ref2_puuP


esiB (Ciprofloxacin and Levofloxacin)

esiB encodes for Secretory immunoglobulin A-binding protein (UP_esiB).

GO Molecular function: IgA binding and Metal ion binding

GO Biological function: Negative regulation of immune response and neutrophil activation, and pathogenesis

Complete GO annotation: GO_esiB

According to the study of Pastorello et al. (Ref1_esiB), esiB helps in secretion of the protein which binds with immunoglobulins in the blood or antibodies helping bacteria escape from neutrophil (cell eating bacteria). The neutrophil is the most common White Blood Cells (WBC) in the human body, so these proteins help the bacterial pathogen in escaping the immune system pathway in the patients of Urinary Tract Infections. The study also concluded that esiB is preferentially associated with extraintestinal strains, while the gene is rarely found in either intestinal or nonpathogenic strains of E. coli.

Importance: The presence and importance of this gene in the case of patients with Urinary Tract Infection (one of the major Hospital Acquired Infections) make it an important target/gene to explore using wet-lab experiments in the case of A. baumannii.



aroP (Ciprofloxacin and Levofloxacin)

aroP encodes for Aromatic amino acid transport protein. It is a permease that is involved in the transport across the cytoplasmic membrane of the aromatic amino acids (phenylalanine, tyrosine, and tryptophan), (UP_aroP).

GO Molecular function: Transmembrane transporter activity of aromatic amino acids

GO Biological function: Amino acids transport

GO Cellular Component: Integral component of Plasma membrane

Complete GO annotation: GO_aroP

Since aroP helps in encoding protein responsible for transportation aromatic amino acids, therefore it is related to very basic cellular functions. Amino acids are important for the process of transcription and translation, their transportation plays an important role in these functions.

Importance: There is a lack of studies conducted for exploring the functioning of aroP in the context of A. baumannii, which makes it a novel and important target pathway to be explored for using wet-lab experiments, especially because it is involved in the basic cellular process i.e. amino acid transport.



tnsB (Ciprofloxacin)

tnsB encodes for Transposon Tn7 transposition protein, which are very special proteins helping in cutting, pasting, and making copies of DNA in the chromosome (UP_tnsB).

GO Molecular function: DNA Binding, and Transposase activity

GO Biological function: DNA Integration and DNA-mediated transposition

GO Cellular Component: Cytoplasmic membrane

Complete GO annotation: GO_tnsB

Ciprofloxacin acts by inhibition of DNA replication by inhibiting bacterial DNA topoisomerase and DNA-gyrase. Transposons help in DNA strand breakage which is also carried out by topoisomerase. These facts make it very clear that tnsB is an important gene and target in the context of DNA replication and is involved in a similar mechanism as that of Ciprofloxacin.

Tn7 class transposon proteins are associated with carbapenem-resistance in A. baumannii (Ref1_tnsB). The study by Rose (Ref2_tnsB), discovered a novel Tn7-related transposon, TnAbaR1 which contributes to the accumulation and dissemination of antibiotic resistance genes. According to their study, Tn7 is a well-studied, highly promiscuous cut-and-paste transposon, found in a variety of bacteria and mainly important for resistance to antibiotics such as trimethoprim and streptomycin.

Importance: The involvement of tnsB in being a cause of resistance to several antibiotics makes it an important target and pathway to be explored especially in the context of our novel protein-based therapeutic and our pathogen of interest, A. baumannii.



xerC (Ciprofloxacin)

xerC encodes for tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules (UP_xerC).

GO Molecular function: DNA binding, Site-specific recombinase activity

GO Biological function: Cell cycle, Cell division, and Chromosome segregation

GO Cellular Component: Cytoplasm

Complete GO annotation: GO_xerC

It binds cooperatively to specific DNA consensus sequences that are separated from XerD binding sites by a short central region, forming the heterotetrameric XerC-XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmid (UP_xerC).

During the recombination phase, this complex catalyzes two consecutive pairs of strand exchanges, implying that specific pairs of active sites are sequentially switched on and off in the recombinase tetramer to ensure that appropriate DNA strands will be exchanged at both reaction steps. These findings have been made for E. coli and it would be interesting to check for the same in the case of A. baumannii.

According to the study related to A. baumannii conducted by Lin et al. (Ref1_xerC), they concluded that XerC and XerD are functional proteins and participate in horizontal dissemination of resistant genes among bacteria. The horizontal dissemination or transfer of resistance genes is a major cause of the increase in Antibiotic resistance. Furthermore, the study conducted by Merino et al. (Ref2_xerC), found that DNA recombination through the Xer system in plasmids requires XerC and XerD (recombinases). DNA recombination helps in the natural editing of the bacterial genome and makes the natural process of evolution faster.

Importance: Since A. baumannii is an opportunistic pathogen that is evolving at a faster rate, and as mentioned above, xerC helps in DNA recombination which leads to natural editing of the genome, becomes an important target or pathway to be explored using wet-lab experiments.



asnC (Levofloxacin)

asnC encodes for a regulatory protein called AsnC (UP_asnC).

GO Molecular function: Amino acid-binding, DNA-binding transcription activity, and Sequence-specific DNA binding

GO Biological function: Positive and negative regulation of transcription, Response to amino acid

Complete annotation: GO_asnC

The study conducted by Gebhardt et al. (Ref1_asnC), finds the list of around 300 genes which are important for the survival and growth of A. baumannii, and find two AsnC/Lrp family regulators as putative transcriptional regulators.

Importance: The involvement of asnC in amino acid binding and impacting the process of transcription makes it an interesting pathway to be explored using wet-lab experiments. Like, aroP, it helps bacteria in performing basic cellular functions which are essential for survival and growth.



puuP (Levofloxacin)

puuP encodes for putrescine importer PuuP (UP_puuP)

GO Molecular function: Putrescine transmembrane transporter activity

GO Biological function: Amino acid transport and cellular response to DNA damage stimulus

Complete annotation: GO_puuP

It is involved in the uptake of Putrescine, and according to a study conducted by Terui et al. (Ref1_puuP) it helps in the import of putrescine to be utilized as an energy resource in absence of glucose. Further, it has a biological process of helping in the cellular response to DNA damage, and given the fact that Levofloxacin is involved in the mechanism of DNA replication which makes it a very interesting and prospective pathway to be explored.

According to the study by Hassan et al. (Ref2_puuP), A. baumannii encodes for the transport protein AceI, which confers resistance to chlorhexidine, a widely used antiseptic. They also concluded that several gene expression studies have revealed that the aceI gene responsible for encoding AceI protein is induced in A. baumannii by the short-chain diamines cadaverine and putrescine. It helps us in understanding the indirect involvement of putrescine imported by puuP in antibiotic resistance.

Importance: puuP helps in conferring resistance to chlorhexidine, it would be very important to check for the same in the case of Levofloxacin especially for A. baumannii.




Genes Antibiotic Gene Ontology
Annotations
Mechanism of Action References
aadB Gentamicin
Tobramycin
Amikacin
GO_aadB Antibiotic inactivation CARD_aadB
Ref1_aadB
Ref2_aadB
Ref3_aadB
Ref4_aadB
neo Gentamicin
Tobramycin
Amikacin
GO_neo Kanamycin kinase activity -
msr(E) Gentamicin
Tobramycin
Amikacin
GO_msrE Plasmid DNA Ref1_msrE
Ref2_msrE
Ref3_msrE
Ref4_msrE
emrE Gentamicin GO_emrE Antibiotic efflux CARD_emrE
cysL Tobramycin GO_cysL DNA binding -
rmtB Amikacin GO_rmtB Antibiotic target alteration CARD_rmtB
Ref1_rmtB
Ref2_rmtB
Ref3_rmtB
Ref4_rmtB


aadB (Gentamicin, Tobramycin and Amikacin)

aadB encodes for 2''-aminoglycoside nucleotidyltransferase (UP_aadB)

It helps in mediating bacterial resistance to kanamycin, gentamicin, dibekacin, sisomicin, and tobramycin by adenylate the 2''-hydroxyl group of these antibiotics in K. pneumoniae (UP_Kp_aadB) and kanamycin, gentamicin, and tobramycin in E. coli (UP_aadB).

GO Molecular function: Aminoglycoside 2''-nucleotidyltransferase activity, and Metal ion binding

GO Biological function: Response to antibiotic and Antibiotic resistance

Complete annotation: GO_aadB

aadB is a resistance-conferring gene which is confirmed by one of the most essential and relevant databases i.e. The Comprehensive Antibiotic Resistance Database (CARD). It works by the mechanism of antibiotic inactivation and confers resistance to aminoglycoside antibiotics (CARD_aadB).

The study conducted by Rizk et al. (Ref1_aadB) involved the collection of clinical samples of A. baumannii strains from patients in Intensive Care Units (ICUs) with suspected hospital-acquired infections followed by checking them for resistance to aminoglycoside antibiotics. The study concluded that the most common prevalent resistant genes among A. baumannii resistance to aminoglycosides was aadB with a contribution towards antibiotic resistance as high as 42%. Since this study involves strains taken from hospitals with suspected infections, it makes it essential for our novel protein-based drug to be checked for its efficacy against aadB.

As per the study by Anderson et al. (Ref2_aadB), in A. baumannii AB5075, a large plasmid (p1AB5075) carries aadB, a 2″-nucleotidyltransferase that confers resistance to both tobramycin and gentamicin but not amikacin. It is very important in the case of our machine learning approach since our approach ranks aadB as the most important feature (gene/allele) in the case of Gentamicin and Tobramycin but not in the case of Amikacin.

The study conducted by Chan et al. (Ref3_aadB), found a novel antibiotic resistance island in A. baumannii by analyzing genomes of several isolates collected from the US hospital system. They further concluded that after sequencing the genomes to completion, they found tobramycin-resistance gene aadB.

Si-Tuan et al., (Ref4_aadB, Ref4_msrE) characterized the genome of the A. baumannii strain DMS06669 which was isolated from the sputum of a male patient with hospital-acquired pneumonia, and identified genes related to antibiotic resistance. They find aadB which is majorly resistant to gentamicin, as one of the genes responsible for conferring resistance in the strain.

Importance: These several studies make it very clear that aadB is an important gene especially considering resistance towards aminoglycoside antibiotics. Moreover, the presence of resistance by aadB to majorly gentamicin and tobramycin but not amikacin further validates the effectiveness of our machine learning analysis as aadB was the top feature in the first two antibiotics but not in the latter.



neo (Gentamicin, Tobramycin and Amikacin)

neo encodes Aminoglycoside 3'-phosphotransferase (UP_neo)

GO Molecular function: ATP binding, Kanamycin kinase activity

GO Biological function: Response to antibiotic and Antibiotic resistance

Complete GO annotation: GO_neo

It helps in providing resistance to kanamycin, neomycin, paromomycin, ribostamycin, butirosin, and gentamicin B in the case of K. pneumoniae. This enzyme is encoded by the kanamycin and neomycin resistance transposon Tn5. Tn5 was originally isolated from K. pneumoniae, but has been transferred to a number of bacteria including E. coli. Since it has been transferred to E. coli, it is quite important to check for its relevance in the case of A. baumannii.

Importance: There has been a lack of literature studies conducted for neo in the context of A. baumannii, but it targets using protein pathway which is similar in mechanism to aminoglycoside antibiotics. Moreover, as mentioned before, it would be interesting to check for its relevance in A. baumannii in context of our novel protein-based drug.



msr(E) (Gentamicin, Tobramycin and Amikacin)

msr(E) encodes for ABC-F type ribosomal protection protein (UP_msrE).

GO Molecular function: ATPase binding and ATP binding

Complete annotation: GO_msrE

msr(E) is a resistant conferring gene as per the Comprehensive Antibiotic Resistance Database (CARD) and provides resistance through antibiotic target alteration (CARD_msrE). Furthermore, as per CARD, Msr(E) is an ABC-F subfamily protein expressed to K. pneumoniae that confers resistance to erythromycin and streptogramin B antibiotics. It is associated with plasmid DNA. It is also 100% identical to ABC-F type ribosomal protection protein Msr(E) which is in multiple species. Since it is associated with plasmid DNA, it becomes an important factor in horizontal transfer and dissemination of antibiotic resistance.

Blackwell and Hall (Ref1_msrE) find in their study that macrolide resistance genes msrE and mphE were present in an 18.2-kb plasmid of A. baumannii isolate from Singapore which confers resistance to erythromycin and tetracycline, both of which follow protein synthesis mechanism.

A study conducted by Karah et al. (Ref2_msrE) concluded that msr(E) is one of the resistance genes present in clinical isolates of A. baumannii in Pakistan. The study by Kumburu et al. (Ref3_msrE) utilized Whole Genome Sequencing (WGS) to identify resistance-conferring genes in MDR A. baumannii in Tanzania. They found several antibiotic resistance genes some of which were present in chromosomes while some on plasmids. msr(E) was detected as an antibiotic resistance gene that is present on plasmids and playing an important role in the spreading of the resistance.

Similar to the case of aadB, the study conducted by Si-Tuan et al., (Ref4_aadB, Ref4_msrE) identified msr(E) which is majorly resistant to streptogramin, which follows the similar mechanism as of aminoglycoside antibiotics.

Importance: As shown by several studies, msr(E) is responsible for resistance to several antibiotics like macrolide, streptogramin, etc, which follow a similar mechanism to those of aminoglycosides, it becomes exciting and interesting to check for its relevance to Gentamicin, Tobramycin, and Amikacin in case of A. baumannii.



emrE (Gentamicin)

emrE encodes for Multidrug transporter EmrE (UP_emrE).

GO Molecular function: Antiporter activity, Identical protein binding, etc.

GO Biological function: Cellular response to DNA damage stimulus, Response to drug, etc.

Complete GO annotation: GO_emrE

It is a multidrug efflux protein that confers resistance to a wide range of toxic compounds, including ethidium, methyl viologen, acriflavine, tetraphenylphosphonium (TPP+), benzalkonium, propidium, dequalinium, and the aminoglycoside antibiotics streptomycin and tobramycin (UP_emrE).

Further, as per the Comprehensive Antibiotic Resistance Database (CARD), EmrE is a small multidrug transporter and works by antibiotic efflux mechanism to confer antibiotic resistance (CARD_emrE).

Importance: emrE is majorly found in P. aeruginosa and E. coli, which makes it quite interesting to check for existence on A. baumannii genomes. Moreover, it has been shown to be causing resistance to Tobramycin while our machine learning detected it to be an important gene in the case of Gentamicin, so it would also be exciting to validate and confirm by wet-lab experiments.



cysL (Tobramycin)

cysL encodes for HTH-type transcriptional regulator CysL (UP_cysL).

GO Molecular function: DNA-binding transcription factor activity

GO Biological function: DNA-templated regulation of transcription

Complete GO annotation: GO_cysL

There is a lack of literature evidence in the case of cysL, but it has been identified as one of the topmost features in the case of Tobramycin, and given the fact our machine learning has identified several genes confirming to literature evidence, cysL is one of the novel genes uncovered by our algorithm responsible for antibiotic resistance.

Importance: It would be interesting to check the relevance and importance of cysL in the context of A. baumannii and our novel protein-based drug as well, as it has been detected as the topmost feature by machine learning.



rmtB (Amikacin)

rmtB encodes for 16S rRNA (guanine(1405)-N(7))-methyltransferase (UP_rmtB).

GO Molecular function: rRNA methyltransferase activity

GO Biological function: Response to antibiotic and Antibiotic resistance

Complete GO annotation: GO_rmtB

rmtB encoding protein specifically methylated the N7 position of guanine 1405 in 16S rRNA, and conferring resistance to various aminoglycosides (UP_rmtB).

It is a resistance gene as per the Comprehensive Antibiotic Resistance Database (CARD), which works with the mechanism of antibiotic target alteration and belongs to the drug class of aminoglycoside antibiotics (CARD_rmtB).

Tada et al. (Ref1_rmtB) conducted a study on strains of A. baumannii and P. aeruginosa isolated from patients in intensive care units (ICUs) in two medical settings in Vietnam and out of which 71.3% strains were highly resistant to amikacin and gentamicin. They further concluded that, 16S rRNA methylase RmtB was produced by 9 strains (of 101) of A. baumannii and 2 (of 15) strains of P. aeruginosa .

The study by Lee et al. (Ref2_rmtB) analyzed amikacin resistant strains of gram-negative bacteria in Korea and concluded that armA and rmtB were genes predominantly responsible for the resistance.

Wachino et al. (Ref3_rmtB) and Wang et al. (Ref4_rmtB) concluded that 16S rRNA methylases, which lead to the high-level resistance of various aminoglycosides, can easily transfer to other bacteria since their genes are typically present on plasmids. The transfer of genes plays an important role in horizontal gene transfer and the dissemination of antibiotic resistance.

Importance: Several studies have indicated the spread of aminoglycoside resistance in A. baumannii which is a major cause of worry for the researchers. Since our novel drug is protein-based therapeutic, it becomes apparent to test our drug for its efficacy against such antibiotic-resistant genes.




Genes Antibiotic Gene Ontology
Annotations
Mechanism of Action References
glmM Ceftriaxone GO_glmM Phosphoglucosamine mutase protein Ref1_glmM
Ref2_glmM
Ref3_glmM
mshA Ceftriaxone GO_mshA D-inositol 3-phosphate glycosyltransferase CARD1_mshA
CARD2_mshA
CARD3_mshA
relE Imipenem GO_relE mRNA interferase toxin Ref1_relE
Ref2_relE
CARD_relE
tufA Imipenem GO_tufA Elongation factor Tu 1 Ref1_tufA
yafQ Ceftazidime GO_yafQ mRNA interferase toxin -
eptA Ceftazidime GO_eptA Phosphoethanolamine transferase Ref1_eptA
Ref2_eptA
CARD_eptA


glmM (Ceftriaxone)

glmM encodes for Phosphoglucosamine mutase protein (UP_glmM).

GO Molecular function: Magnesium ion binding, Phosphoglucosamine mutase activity, and Phosphomannomutase activity

GO Biological function: Carbohydrate metabolic process, Protein autophosphorylation, and UDP-N-acetylglucosamine biosynthetic process

Complete GO annotation: GO_glmM

Li et al. (Ref1_glmM) analyzed carbapenem-resistant clinical A. baumannii strains. They identified several AbaR resistance islands for a better understanding of evolutionary processes contributing to the emergence of carbapenem-resistant A. baumannii. As per their analysis, phosphoglucosamine mutase (GlmM) was detected in type 2, 7, and 10 AbaR islands. It is important to note that GlmM can catalyze the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate, which is an essential step in the formation of the cell wall precursor UDP-N-acetylglucosamine (Ref2_glmM).

Kenyon and Hall (Ref3_glmM) analyzed the biosynthesis of extracellular polysaccharides which are major immunogenic components of the bacterial cell envelope. They further mentioned that GlmM is required for the synthesis of UDP-D-GlcpNAc.

Importance: There are several studies stating that glmM encodes for the formation of cell wall precursors, and it has been detected as one of the top features in the case of Ceftriaxone which also works with the mechanism of bacterial cell wall synthesis. So, our machine learning algorithm has identified genes involved in the pathway of antibiotics.



mshA (Ceftriaxone)

mshA encodes for D-inositol 3-phosphate glycosyltransferase (UP_mshA).

GO Molecular function: Acetylglucosaminyltransferase activity, transferring glycosyl groups

GO Biological function: Mycothiol biosynthetic process

Complete annotation: GO_mshA

It is involved in the mechanism of Acetylglucosaminyltransferase which is important for cell wall mechanism as mentioned in the case of glmM.

The Comprehensive Antibiotic Resistance Database (CARD) provides several evidences for the involvement of mshA in antibiotics targeting cell wall mechanisms. Mutations in mshA result in the inactivation of antibiotics and it works by the mechanism of antibiotic target alteration (CARD1_mshA).

As mentioned above, mshA is glycosyltransferase and is involved in the first step of mycothiol biosynthesis. This is a step that is required for growth in M. tuberculosis and resistance has been in the gene to isoniazid, which is antibiotic inhibiting mycobacterial cell wall (CARD2_mshA). Further, the mutations in mshA confer resistance to isoniazid in M. tuberculosis (CARD3_mshA).

Importance: Our machine learning approach identifies allele of mshA as one of the most important features in predicting resistance phenotype of strain, which in accordance with literature evidence related to mutations in mshA causing antibiotic resistance. Moreover, it has been detected as one of the most important genes in the case of Ceftriaxone, which also works with mechanisms of bacterial cell wall synthesis.



relE (Imipenem)

relE encodes for mRNA interferase toxin RelE (UP_relE).

GO Molecular function: DNA-binding transcription repressor activity, ribosome binding, rRNA binding

GO Biological function: Cellular response to amino acid starvation, mRNA catabolic process, negative regulation of translation

GO Cellular Component: Protein-DNA complex

Complete GO annotation: GO_relE

relE encodes for mRNA interferase, and mRNA interferases play a role in bacterial persistence to antibiotics; overexpression of this protein induces persisters resistant to ciprofloxacin and ampicillin (UP_relE, Ref1_relE).

relE is a part of type II toxin-antitoxin system relBE wherein it is toxin and relB is anti-toxin. In presence of unfavorable conditions, toxin relE sharply increases persisters (cells that neither grow nor die in the presence of bactericidal agents) and are largely responsible for high levels of biofilm tolerance to antimicrobials (CARD_relE). So it blocks the process of mRNA to protein conversion inhibiting cell growth. The increase in biofilm tolerance makes it difficult for antibiotics to reach the bacteria for necessary action.

Pourhajibagher et al. (Ref2_relE) utilized the concept of this toxin-antitoxin system, relBE, for designing Antimicrobial Photodynamic Therapy as an alternative to conventional antibiotic therapy using in-silico modeling and bioinformatics analysis.

Importance: There are several studies indicating the involvement of relE in being responsible for antibiotic resistance, so it makes it interesting to look for its relevance in the case of A. baumannii using wet-lab experiments.



tufA (Imipenem)

tufA encodes for the Elongation factor Tu 1 (UP_tufA).

GO Molecular function: GTPase activity, GTP binding

GO Biological function: Translational elongation, Response to antibiotic and Antibiotic Resistance.

Complete GO annotation: GO_tufA

The study conducted by Koenigs et al. (Ref1_tufA) showed for the first time that A. baumannii binds to host-derived plasminogen with help of the translation elongation factor Tuf as a moonlighting plasminogen-binding protein that is exposed on the outer surface of A. baumannii. This binding phenomenon is at least partly dependent on lysine residues and ionic interactions. Once bound to Tuf, plasminogen can be converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component C3b. Therefore they concluded that Tuf acts as a multifunctional protein that may contribute to the virulence of A. baumannii by aiding in dissemination and evasion of the complement system.

Importance: The results of the above study clearly indicates the importance of Tuf protein is increasing and contributing to the virulence of A. baumannii. It would be interesting to explore more about the functioning and mechanism of this protein in the context of our novel protein-based drug-using wet-lab experiments.



yafQ (Ceftazidime)

yafQ encodes for mRNA interferase toxin YafQ (UP_yafQ)

GO Molecular function: DNA binding, ribosome binding

GO Biological function: mRNA catabolic process, response to antibiotic

Complete GO annotation: GO_yafQ

yafQ is working in a similar mechanism that of relE i.e. working as a toxin-antitoxin pair. YafQ protein pairs with DinJ. which seems to play a role in biofilm formation. mRNA interferases play a role in bacterial persistence to antibiotics (UP_yafQ). Since it helps in biofilm formation and biofilm can decrease the amount of antibiotics reaching the bacterial cell, therefore it is indirectly responsible for increasing antibiotic resistance.

Importance: It has not been explored much in the literature, and it would be really interesting to explore its working in the context of A. baumannii along with relE as well.



eptA (Ceftazidime)

eptA encodes Phosphoethanolamine transferase EptA (UP_eptA).

GO Molecular function: phosphotransferase activity, sulfuric ester hydrolase activity

GO Biological function: Lipid A biosynthesis, Antibiotic Resistance

Complete GO annotation: GO_eptA

As per the Comprehensive Antibiotic Resistance Database (CARD), eptA mediates the modification Lipid A by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine which results in a less negative cell membrane and decreased binding of polymyxin B. It works by the mechanism of antibiotic target alteration (CARD_eptA).

The study conducted by Gerson et al. (Ref1_eptA) concluded that mutations in eptA were associated with colistin resistance in A. baumannii. Trebosc et al. (Ref2_eptA) suggested that direct targeting of the homologous PetN transferases PmrC/EptA may have the potential to overcome colistin resistance in A. baumannii.

Importance: eptA has been known to provide resistance to polymyxin B which works with the mechanism of membrane disruption. It has been identified as one of the top genes for Ceftazidime which also works with the mechanism of cell wall synthesis. Further, it has been studied to play a role in colistin resistance which makes it very important and interesting to check for the efficacy of our novel protein-based drug against eptA.




Mechanism: Sulfamethoxazole inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA). Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. So, in a nutshell, combinations of these drugs mainly work with folate synthesis.

In bacteria, antibacterial sulfonamides act as competitive inhibitors of the enzyme dihydropteroate synthase (DHPS), an enzyme involved in folate synthesis.



folP

folP encodes for Dihydropteroate synthase (UP_folP)

GO Molecular function: Dihydropteroate synthase activity, and metal ion binding

GO Biological function: Folate biosynthesis and Response to drug

GO Cellular Component: Cytoplasm and Cytosol

Complete GO annotation: GO_folP

The protein Dihydropteroate synthase catalyzes the condensation of para-aminobenzoate (PABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8-dihydropteroate (H2Pte), the immediate precursor of folate derivatives (UP_folP).

As per the Comprehensive Antibiotic Resistance Database (CARD), point mutations in dihydropteroate synthase, folP prevent sulfonamide antibiotics from inhibiting its role in folate synthesis, thus conferring sulfonamide resistance (CARD_folP). It works with the mechanism of antibiotic target alteration. Our machine learning approach identified folP and its alleles as the topmost important features which further validate the efficacy of our algorithm.

Importance: The detection of folP in the case of antibiotics working with folate disruption by our machine learning algorithm is a very important indication for the efficacy of the approach. It would be very interesting to check for the impact of folP in establishing resistance to our novel protein-based drug.

Mechanism: Ampicillin/Sulbactam is a combination of a β-lactam antibiotic and a β-lactamase inhibitor. Ampicillin works by binding to penicillin-binding proteins (PBPs) to inhibit bacterial cell wall synthesis. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.

Beta-lactam enzymes are produced by some bacteria that are responsible for their resistance to beta-lactam antibiotics like penicillins, cephalosporins, cephamycins, and carbapenems. These antibiotics have a common element in their molecular structure: a four-atom ring known as a beta-lactam.



bla

bla encodes for Beta-lactamase TEM

GO Molecular function: Beta-lactamase activity

GO Biological function: Beta-lactam antibiotic catabolic process, response to antibiotic and Antibiotic resistance

Complete GO annotation: GO_bla

TEM-type is the most prevalent beta-lactamases in Enterobacteriaceae; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to these antibiotics (UP_bla).

The study conducted by Subramaniyan and Sundaram (Ref1_bla) concluded the presence of bla genes in carbapenem-resistant P. aeruginosa and A. baumannii isolated from clinical settings, Intensive Care Unit (ICU). Further, the study by Kumar et al. (Ref2_bla) analyzed the carbapenem-resistant A. baumannii isolates from two tertiary care hospitals of North India and concluded that bla encoding clones. It is an important discovery especially in the context of hospital settings in India.

Importance: Our machine learning algorithm identifies bla as the most important feature, which is also in the mechanism of Ampicillin and Sulbactam. It shows the efficacy of our approach. Moreover, the above studies clearly indicate the importance of bla gene in A. baumannii and it would be surely interesting to check for its relevance in the case of our novel protein-based drug.






Correlation and mutational analysis of gene-gene pair




xerC - ssuC (Ciprofloxacin)

  1. Resistance increases with mutations in xerC
  2. Resistance increases with mutations in ssuC
  3. The increase in resistance with mutations in both genes confirm a positive correlation between them
  4. Mutations in xerC are accompanied by an increase in resistance for all of the following, ssuC_1, ssuC_2, ssuC_3, ssuC_4 and ssuC_5


puuP - astC (Levofloxacin)

  1. astC is a gene important for resistance but strains became more susceptible in presence of puuP
  2. Mutations in astC causes a decrease in resistance
  3. Mutations in astC increase resistance in presence of puuP but decrease resistance with mutations in puuP which confirms a negative correlation


emrE - folP (Gentamicin)

  1. Resistance increases with mutations in emrE
  2. Resistance increases with mutations in folP
  3. Mutations in both the genes work in tandem and increase the resistance of strains confirming a positive correlation between them


cysL- hcaR (Tobramycin)

  1. Resistance increases with mutations in cysL
  2. Resistance decreases with mutations in hcaR
  3. Mutations in hcaR increases the resistance but not when cysL is present confirming a negative correlation


esiB - cspV (Amikacin)

  1. Resistance decreases with mutations in esiB
  2. Resistance decreases with mutations in cspV
  3. Resistance in strains with cspV decreases or reaches zero with mutations in esiB confirming a positive correlation


ssuA - ssuC (Ceftriaxone)

  1. There is lack of strains having ssuA and ssuC genes without mutations
  2. Resistance increases with mutations in ssuA
  3. Resistance increases with mutations in ssuC which confirms a positive correlation between genes


tufA - tufB (Imipenem)

  1. Resistance decreases with mutations in tufA
  2. Resistance increases with mutations in tufB confirming a negative correlation between genes


aphA - fatA (Ceftazidime)

  1. Resistance increases with mutations in aphA
  2. Resistance increases with mutations in fatA which confirms a positive correlation between genes
  3. There is less number of strains having fatA gene and much more number of strains with mutations in fatA


folP - emrE

  1. Resistance increases with mutations in folP
  2. Resistance increases with mutations in emrE confirming a positive correlation between genes
  3. There is less number of strains with folP and more number of strains with mutations in folP


mobA - yddG

  1. Resistance decreases with mutations in mobA
  2. Resistance increases with mutations in yddG confirming a negative correlation between genes
  3. Increased resistance due to mutations in yddG vanished with mutations in mobA