Difference between revisions of "Team:Virginia"

Line 32: Line 32:
 
         <div class="topnav">
 
         <div class="topnav">
 
           <div class="dropdown">
 
           <div class="dropdown">
             <a class="active mainitem" href="#home">HOME</a>
+
             <a class="active mainitem" href="https://2020.igem.org/Team:Virginia">HOME</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia">Main</a>
 
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia">Main</a>
               <a class="hvr-sweep-to-right" href="#abstract">Abstract</a>
+
               <a class="hvr-sweep-to-right" href="https://2020.igem.org/Team:Virginia/#abstract">Abstract</a>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 120: Line 120:
 
       </div>
 
       </div>
 
       <div id="scrollCheckpoint"></div>
 
       <div id="scrollCheckpoint"></div>
       <center>
+
       <div class="block1 containerBlock">
      Top filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>
+
        <div class="left1 leftBlock">
 
+
          <div>
      <div class="dict">temporary<span><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Carboxysome_and_bacterial_microcompartments.jpg/800px-Carboxysome_and_bacterial_microcompartments.jpg"/>Bacterial microcompartments (BMCs) are organelle-like structures, consisting of a protein shell that encloses enzymes and other proteins. BMCs are typically about 40–200 nanometers in diameter and are entirely made of proteins. The shell functions like a membrane, as it is selectively permeable.</span></div> filler
+
            <div class="left11">
 
+
              Through the use of Bacterial Microcompartments and DNA Scaffolds,
     
+
            </div>
      <br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/> temporary <div class="dict">filler<span>DNA origami is the nanoscale folding of DNA to create non-arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of its base sequences. DNA is a well-understood material that is suitable for creating scaffolds that hold other molecules in place or to create structures all on its own.</span></div><br/>  
+
            <div class="left12">
       </center>
+
              We're revolutionizing biosynthesis with intracellular nanoreactors.
    </div>
+
            </div>
    <div class="mainContainer2">
+
            <a class="left13" href="https://2020.igem.org/Team:Virginia/Description">
      <center>
+
              Find out more in our project description &gt;
      temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>  
+
            </a>
      </center>
+
          </div>
      <center>
+
        </div>
      temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>temporary filler<br/>Bottom Filler<br/>  
+
        <div class="right1 rightBlock">
       </center>
+
          <img class="pathBG" src="https://static.igem.org/mediawiki/2020/d/d6/T--Virginia--images--pathwaybackground.png"/>
 +
          <div class="hoverHolder">
 +
            <img class="indexBMC" src="https://static.igem.org/mediawiki/2020/d/d7/T--Virginia--images--indexBMC.svg"/>
 +
          </div>
 +
        </div>
 +
       </div>
 +
      <div id="abstract"></div>
 +
      <div class="block2 containerBlock">
 +
        <div class="left2 leftBlock">
 +
          <img class="labImg" src="https://static.igem.org/mediawiki/2020/9/94/T--Virginia--images--lab.png"/>
 +
          <div class="abstractSvgHolder">
 +
            <svg overflow="hidden" preserveAspectRatio="xMidYMid meet" viewBox="0 0 1280 720" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><clipPath id="clip0"><rect height="720" width="1280" x="0" y="0"></rect></clipPath></defs><g clip-path="url(#clip0)"><rect fill="#FFFFFF" fill-opacity="0" height="720" width="1280" x="0" y="0"></rect><path d="M576.018 589.423 547.94 645.5 171.203 645.5 28.5001 360.5 171.203 75.5001 547.94 75.5001 576.5 132.54" fill="none" fill-rule="evenodd" stroke="#F7F7F7" stroke-miterlimit="8" stroke-width="33.3333"></path><text fill="#F7F7F7" font-family="'THICCCBOI',THICCCBOI_MSFontService,sans-serif" font-size="253" font-weight="700" transform="translate(110.667 430)">Abstract</text></g></svg>
 +
          </div>
 +
        </div>
 +
        <div class="rightBlock">
 +
          <div class="abstractHolder">
 +
            The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of bacterial microcompartments (BMCs) with encapsulated dsDNA scaffolds that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis.
 +
          </div>
 +
        </div>
 +
       </div>
 
     </div>
 
     </div>
 
     <!-- Stop writing body here -->
 
     <!-- Stop writing body here -->

Revision as of 12:55, 27 October 2020

Manifold

Through the use of Bacterial Microcompartments and DNA Scaffolds,
We're revolutionizing biosynthesis with intracellular nanoreactors.
Find out more in our project description >
Abstract
The lack of a versatile and reliable way to improve metabolic flux channeling, pathway orthogonality, and product yields is a major impediment to the expanded utilization of biosynthesis for the production of drugs and industrially valuable chemicals. Manifold, a platform technology that addresses this problem, consists of bacterial microcompartments (BMCs) with encapsulated dsDNA scaffolds that sequester and spatially organize, at fixed concentrations, biosynthetic enzymes presented as zinc-finger fusion proteins. Here we deliver the designs for an E. coli cell capable of synthesizing resveratrol using the Manifold platform. The Manifold platform will help lower costs and expand the applications of chemical biosynthesis.