Team:Harvard/References

References

  • Abraham, J. (2020). Passive antibody therapy in COVID-19. Nature Reviews Immunology, 20(7), 401–403. https://doi.org/10.1038/s41577-020-0365-7
  • Adamson, A. S., & Smith, A. (2018). Machine Learning and Health Care Disparities in Dermatology. JAMA Dermatology, 154(11), 1247. https://doi.org/10.1001/jamadermatol.2018.2348
  • Afonin, K. A., Dobrovolskaia, M. A., Church, G., & Bathe, M. (2020). Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology. ACS Nano, 14(8), 9221–9227. https://doi.org/10.1021/acsnano.0c04753
  • Anastassacos, F. (2019). Towards the therapeutic application of DNA origami [Doctoral dissertation]. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013166
  • Anastassacos, F. M., Zhao, Z., Zeng, Y., & Shih, W. M. (2020). Glutaraldehyde cross-linking of Oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. Journal of the American Chemical Society, 142(7), 3311-3315. https://doi.org/10.1021/jacs.9b11698
  • Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L., Pedersen, J. S., Birkedal, V., Besenbacher, F., Gothelf, K. V., & Kjems, J. (2009). Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459(7243), 73-76. https://doi.org/10.1038/nature07971
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Bujold, K. E., Hsu, J. C. C., & Sleiman, H. F. (2016). Optimized DNA “Nanosuitcases” for Encapsulation and Conditional Release of siRNA. Journal of the American Chemical Society, 138(42), 14030–14038. https://doi.org/10.1021/jacs.6b08369
  • Burns, J. R., Lamarre, B., Pyne, A. L. B., Noble, J. E., & Ryadnov, M. G. (2018). DNA Origami Inside-Out Viruses. ACS Synthetic Biology, 7(3), 767–773. https://doi.org/10.1021/acssynbio.7b00278
  • Castro, C. E., Kilchherr, F., Kim, D., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., & Dietz, H. (2011). A primer to scaffolded DNA origami. Nature Methods, 8(3), 221-229. https://doi.org/10.1038/nmeth.1570
  • Engelhardt, F. A. S., Praetorius, F., Wachauf, C. H., Brüggenthies, G., Kohler, F., Kick, B., … Dietz, H. (2019). Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds. ACS Nano, 13(5), 5015–5027. https://doi.org/10.1021/acsnano.9b01025
  • Galitsky, B. A., Gelfand, I. M., & Kister, A. E. (1998). Predicting amino acid sequences of the antibody human VH chains from its first several residues. Proceedings of the National Academy of Sciences, 95(9), 5193–5198. https://doi.org/10.1073/pnas.95.9.5193
  • Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare, 295–336. https://doi.org/10.1016/b978-0-12-818438-7.00012-5
  • Graves, J., Byerly, J., Priego, E., Makkapati, N., Parish, S. V., Medellin, B., & Berrondo, M. (2020). A Review of Deep Learning Methods for Antibodies. Antibodies, 9(2), 12. https://doi.org/10.3390/antib9020012
  • Günes, F., Wolfinger, R., & Tan, P.-Y. (2017). Stacked Ensemble Models for Improved Prediction Accuracy. Proceedings of the SAS Global Forum 2017 Conference.
  • Gustafson, C. E., Kim, C., Weyand, C. M., & Goronzy, J. J. (2020). Influence of immune aging on vaccine responses. Journal of Allergy and Clinical Immunology, 145(5), 1309–1321. https://doi.org/10.1016/j.jaci.2020.03.017
  • Hahn, J., Chou, L. Y., Sørensen, R. S., Guerra, R. M., & Shih, W. M. (2020). Extrusion of RNA from a DNA-origami-Based Nanofactory. ACS Nano, 14(2), 1550-1559. https://doi.org/10.1021/acsnano.9b06466
  • Hein, A., Cole, C., & Valafar, H. (2020). An Investigation in Optimal Encoding of Protein Primary Sequence for Structure Prediction by Artificial Neural Networks. ArcXiv.org.
  • Huo, J., Bas, A. L., Ruza, R. R., Duyvesteyn, H. M. E., Mikolajek, H., Malinauskas, T., … Naismith, J. H. (2020). Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature Structural & Molecular Biology, 27(9), 846–854. https://doi.org/10.1038/s41594-020-0469-6
  • Jung, J., Choe, J., Li, L., & Choi, Y. (2000). Regulation of CD27 expression in the course of Germinal center B cell differentiation: The pivotal role of IL-10. European Journal of Immunology, 30(8), 2437-2443. https://doi.org/10.1002/1521-4141(2000)30:8<_x0032_437:_x003a_aid-immu2437>3.0.co;2-m
  • Kim, D., Kilchherr, F., Dietz, H., & Bathe, M. (2011). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Research, 40(7), 2862-2868. https://doi.org/10.1093/nar/gkr1173
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., … Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lashbrook, A. (2018, August 16). AI-Driven Dermatology Could Leave Dark-Skinned Patients Behind. The Atlantic. https://www.theatlantic.com/health/archive/2018/08/machine-learning-dermatology-skin-color/567619/.
  • Li, X., Deventer, J. A. V., & Hassoun, S. (2020). ASAP-SML: An antibody sequence analysis pipeline using statistical testing and machine learning. PLOS Computational Biology, 16(4). https://doi.org/10.1371/journal.pcbi.1007779
  • Liu, G., Zeng, H., Mueller, J., Carter, B., Wang, Z., Schilz, J., … Gifford, D. K. (2019). Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics, 36(7), 2126–2133. https://doi.org/10.1093/bioinformatics/btz895
  • Majikes, J. M., Ferraz, L. C., & LaBean, T. H. (2017). PH-driven actuation of DNA origami via parallel I-motif sequences in solution and on surfaces. Bioconjugate Chemistry, 28(7), 1821-1825. https://doi.org/10.1021/acs.bioconjchem.7b00288
  • Marovich, M., Mascola, J. R., & Cohen, M. S. (2020). Monoclonal Antibodies for Prevention and Treatment of COVID-19. Jama, 324(2), 131. https://doi.org/10.1001/jama.2020.10245
  • Nimrod, G., Fischman, S., Austin, M., Herman, A., Keyes, F., Leiderman, O., … Ofran, Y. (2018). Computational Design of Epitope-Specific Functional Antibodies. Cell Reports, 25(8). https://doi.org/10.1016/j.celrep.2018.10.081
  • Poppleton, E., Bohlin, J., Matthies, M., Sharma, S., Zhang, F., & Šulc, P. (2020). Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Research, 48(12), e72-e72. https://doi.org/10.1093/nar/gkaa417
  • Schmidt, M., Safarani, S., Gastinger, J., Jacobs, T., Nicolas, S., & Schülke, A. (2019). On the Performance of Differential Evolution for Hyperparameter Tuning. ArcXiv.org.
  • Sevy, A. M., Panda, S., Crowe, J. E., Meiler, J., & Vorobeychik, Y. (2018). Integrating linear optimization with structural modeling to increase HIV neutralization breadth. PLOS Computational Biology, 14(2). https://doi.org/10.1371/journal.pcbi.1005999
  • Singh, J. K. D., Luu, M. T., Abbas, A., & Wickham, S. F. J. (2018). Switchable DNA-origami nanostructures that respond to their environment and their applications. Biophysical Reviews, 10(5), 1283–1293. https://doi.org/10.1007/s12551-018-0462-z
  • Suma, A., Poppleton, E., Matthies, M., Šulc, P., Romano, F., Louis, A. A., Doye, J. P., Micheletti, C., & Rovigatti, L. (2019). TacoxDNA: A user‐friendly web server for simulations of complex DNA structures, from single strands to origami. Journal of Computational Chemistry, 40(29), 2586-2595. https://doi.org/10.1002/jcc.26029
  • Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLOS Medicine, 15(11). https://doi.org/10.1371/journal.pmed.1002689
  • Wagenbauer, K. F., Engelhardt, F. A., Stahl, E., Hechtl, V. K., Stömmer, P., Seebacher, F., Meregalli, L., Ketterer, P., Gerling, T., & Dietz, H. (2017). How we make DNA origami. ChemBioChem, 18(19), 1873-1885. https://doi.org/10.1002/cbic.201700377
  • Zhang, S., Jiang, H., Xu, M., Hou, J., & Dai, L. (2015). A Fixed-Size Encoding Method for Variable-Length Sequences with its Application to Neural Network Language Models. ArcXiv.org.
  • Zost, S. J., Gilchuk, P., Chen, R. E., Case, J. B., Reidy, J. X., Trivette, A., … Crowe, J. E. (2020). Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature