Difference between revisions of "Team:NCKU Tainan/Future"

Line 257: Line 257:
 
                     </h1>
 
                     </h1>
 
                     <h3 class="subheading mb-5 pl-2">
 
                     <h3 class="subheading mb-5 pl-2">
                         To make our project impact more
+
                         Envision the future treatment of glaucoma
 
                     </h3>
 
                     </h3>
 
                 </div>             
 
                 </div>             
Line 270: Line 270:
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">
 
                     <div class="flex-grow-1">
                         <p>    In our mission to address glaucoma comprehensively, we decided to provide an even more effective treatment for the disease. Inspired by existing treatments using the nitric-oxide (NO) signaling pathway to target the trabecular meshwork and reduce intraocular pressure<sup>[<a href="#ref1" class="linklink">1</a>]</sup>, we came up with a novel treatment based on gaseous nitric oxide. However, since NO has a short half-life of 400 seconds, we are unable to use the gaseous form NO directly in our treatment.</p>
+
                         <p>    This year, we have tried our best to turn our project from an idealistic concept to implementation. However, we believe that there is still a long way to go to improve our project. We have listed several strategies for further project improvement. We expect our project can make a significant impact on the world in the future.</p>
 
                     </div>     
 
                     </div>     
 
                 </div>               
 
                 </div>               
 
             </div>
 
             </div>
 
         </section>
 
         </section>
        <hr class="hrmar" />
+
        <hr class="hrmar" />    
        <!-- Approaches-->
+
 
         <section class="resume-section">
 
         <section class="resume-section">
             <div class="resume-section-content" id="pcontact">
+
             <div class="resume-section-content" id="pdevice">
                 <h2 class="mb-3">Nitric Oxide Production</h2>
+
                 <h2 class="mb-3">Eye kNOW</h2>
 +
                <h3 class="mb-0" style="margin-top: 1rem;">Nitric Oxide Production</h3>
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>    We cloned <i>bsNOS</i> into <i>E. coli</i> in order to make <i>E. coli</i> produce Nitric Oxide. We chose <i>bsNOS</i> as a target gene because <i>Bacillus subtilis</i> is the closest species that produce a big amount of Nitric Oxide. Eventually, we make engineered <i>E. coli</i> produce Nitric Oxide well. In the future, we can try cloning <i>Nitric Oxide Synthase</i> from GH3 pituitary cells[1]. The <i>NOS</i> from GH3 has a lower K<sub>m</sub> value with higher efficiency. It may increase the Nitric Oxide production efficiency of our engineered <i>E. coli</i>.</p>
+
                         <p>    We cloned bsNOS into E. coli in order to make it produce nitric oxide. We chose bsNOS as a target gene because Bacillus subtilis is the most closely-related species that can produce a substantial amount of Nitric Oxide. Eventually, we managed to engineer E. coli to produce Nitric Oxide. In the future, we would like to try cloning nitric oxide synthase from GH3 pituitary cells[1]. The NOS from GH3 has a lower Km value with higher efficiency. It may increase the nitric oxide production efficiency of our engineered E. coli.</p>
                     </div>
+
                     </div>
                 
+
 
                 </div>
 
                 </div>
 +
                <h3 class="mb-0" style="margin-top: 1rem;">Growth Switch</h3>
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   Our contact lens will be fitted with a tubular semipermeable chamber that is filled with our engineered bacteria, IPTG, NO precursor - L-arginine, and DAP. The volume change of the chamber will cause water to flow out thus increasing the IPTG concentration inside the chamber. The increase in IPTG will induce the bacteria to produce more Nitric Oxide Synthase, which can then convert L-arginine into nitric oxide to lower the intraocular pressure (IOP). This structural change is then able to induce dynamic drug delivery.</p>
+
                         <p>     In the current design, we used CI857 as a heat-sensing protein as a switch that regulates the promoter pR. Therefore, we have to culture our engineered bacteria under 30°C to keep the switch off. This will lead to low culture efficiency. According to research, using mutant pR can increase the culture temperature up to 36°C[2].</p>
                     </div>
+
                     </div>          
 
                 </div>
 
                 </div>
                <h3 class="mb-0" style="margin-top: 1rem;">IOP simulation experiment</h3>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">
 
                        <p>    To prove the concept of our contact lens and our device, we designed an IOP simulation experiment with porcine eye.By changing the drip bag’s height, water pressure will directly increase IOP in the porcine eye, enabling precise control of IOP for experiments<sup>[<a href="#ref3" class="linklink">3</a>]</sup><sup>[<a href="#ref4" class="linklink">4</a>]</sup>.</p>
 
                    </div>   
 
                </div>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">
 
                        <p class="MsoNormal" style="mso-pagination:widow-orphan"><span lang="EN-US" style="mso-bidi-font-size:12.0pt;font-family:&quot;Arial&quot;,sans-serif;mso-fareast-font-family:
 
新細明體;color:black;mso-font-kerning:0pt">In the current design, we used <i>CI857</i>
 
as a heat-sensing protein to build the switch with <span class="SpellE"><i>pR</i>.</span>
 
Therefore, we <span class="GramE">have to</span> culture our engineered bacteria
 
under 30 degrees Celsius to keep the switch off. This will lead to low culture
 
efficiency. According to research, using mutant <span class="SpellE"><i>pR</i></span>
 
can increase the culture temperature up to 36 degrees <span class="GramE">Celsius[</span>2].&nbsp;</span><span lang="EN-US" style="mso-bidi-font-size:12.0pt;font-family:&quot;新細明體&quot;,serif;
 
mso-bidi-font-family:新細明體;mso-font-kerning:0pt"><o:p></o:p></span></p>                    </div>   
 
                </div>
 
                <div class="container-fluid p-0">
 
                <div class="row no-gutters">
 
                <div class="col-lg ">
 
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                <a href="https://static.igem.org/mediawiki/2020/4/4e/T--NCKU_Tainan--design_contact_lens.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/4/4e/T--NCKU_Tainan--design_contact_lens.png" alt="" title="" style="width:100%"></a>
 
                <figcaption class="caption-design">Fig. 1. The structure and design of contact lens.</figcaption>
 
                </figure>
 
                </div>
 
                </div>
 
                </div>
 
            </div>
 
        </section>
 
        <hr class="hrmar" />
 
        <!-- Inspiration-->
 
        <section class="resume-section" >
 
            <div class="resume-section-content" id="pgene">
 
                <h2 class="mb-3">Gene Design</h2>
 
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   In order for our bacteria to reduce intraocular pressure, we planned to engineer our bacteria to have the ability to produce Nitric Oxide Synthase (NOS)<sup>[<a href="#ref5" class="linklink">5</a>]</sup>, an enzyme that can convert L-arginine into NO.</p>
+
                         <p>     A mutation in the OR2 operator region of the rightward pR promoter increases the temperature stability of the pR/cI857 gene expression system. Thus gene expression is stringently repressed at temperatures up to 36°C. By doing so, we can get better production efficiency.</p>
                     </div>
+
                     </div>          
 
                 </div>
 
                 </div>
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
+
               <h3 class="mb-0" style="margin-top: 1rem;">Applications for Ocular Diseases</h3>
                    <div class="flex-grow-1">
+
              <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
                        <p>    For biosafety, we engineered our bacteria to overexpress <i>csgD</i> and <i>csgA</i> for securing bacteria onto the contact lens by increasing binding affinity between bacteria and lens.</p>
+
                    </div>   
+
                </div>
+
               <h3 class="mb-0" style="margin-top: 1rem;"><i>Nitric Oxide Synthases</i> (<i>NOS</i>)</h3>
+
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
+
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   During literature research, we found out that Bacillus subtilis carries <i>Nitric Oxide Synthases</i>(<i>NOS</i>) and has the ability to produce NO, which is responsive to oxidative stress. So we cloned this gene from Bacillus subtilis' genome and designed a new biobrick which we then incorporated into our chassis, WM3064, allowing it to produce NO.</p>
+
                         <p>     Eye kNOw boasts a dynamic drug release system, one that can be applied in other situations. If we replace NOS with other enzymes, we can also develop additional dynamic treatments for intraocular pressure diseases.</p>
                     </div>
+
                     </div>          
 
                 </div>
 
                 </div>
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
+
              <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   In order to dynamically express NOS as patients’ IOP fluctuate, we put <i>NOS</i> under the control of <i>T7</i> promoter and a <i>lacO</i> binding site, which can be controlled by IPTG-inducible <i>T7</i> RNA polymerase provided by another plasmid PDT7 (Plasmid Drive <i>T7</i> RNA polymerase). As previously mentioned, the IPTG concentration inside the ring-like compartment will fluctuate according to the patients’ IOP, leading to dynamic expression of <i>NOS</i>.</p>
+
                         <p>     Not only that, but we can also add a biosensing system into our contact lenses, allowing for the detection of pathogens or inflammation biomarkers in the eye. This way, our dynamic drug release system can be used for more applications so that more people can benefit from Eye kNOw.</p>
                     </div>
+
                     </div>          
 
                 </div>
 
                 </div>
                <div class="container-fluid p-0">
+
              <h3 class="mb-0" style="margin-top: 1rem;">Reduce the Number of Plasmidsh</h3>
                <div class="row no-gutters">
+
              <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
                <div class="col-lg ">
+
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
+
                <a href="https://static.igem.org/mediawiki/2020/3/3b/T--NCKU_Tainan--design_NOS.gif" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/3/3b/T--NCKU_Tainan--design_NOS.gif" alt="" title="" style="width:100%"></a>
+
                <figcaption class="caption-design">Fig. 2. Plasmid design for <i>NOS</i>.</figcaption>
+
                </figure>
+
                </div>
+
                </div>
+
                </div>
+
                <h4 class="mb-0">Functional Test</h4>
+
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
+
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   We tested the kinetics of the enzyme using a NOS assay kit, which utilizes Griess reagents to react with NO and generate colorimetric readouts by measuring O.D.540 value. For the purpose of controlling the production of NOS, we induced bacteria with different concentrations of IPTG and cultured them for different period times.</p>
+
                         <p>     We have introduced several plasmids into our engineered bacteria so that it can produce not only NO but also increase its binding affinity to the contact lens. We have also established a growth switch and kill switch so our bacteria can safely function in the contact lenses. The whole system looks perfect; however, we have designed too many plasmids to introduce into the bacteria, which may increase the burden of bacteria and cause harmful effects on them. Therefore, we hope that some genes can be integrated into the chromosome, while some plasmids can be merged to reduce the number of plasmids in the future.</p>
                     </div>
+
                     </div>          
 
                 </div>
 
                 </div>
                <h3 class="mb-0" style="margin-top: 1rem;">Biosafety</h3>
+
              <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
                <h4 class="mb-0">DAP-deficient strain</h4>
+
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
+
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   We chose <i>E. coli</i> WM3064 as our chassis, which lacks the essential gene <i>dapA</i>. This gene encodes for 4-hydroxy-tetrahydrodipicolinate synthase that is critical to the production of lysine through the DAP pathway<sup>[<a href="#ref6" class="linklink">6</a>]</sup>. Lysine is an essential amino acid in animals, including humans, but can be synthesised de novo in bacteria, lower eukaryotes and plants for utilisation in protein and peptidoglycan cell wall synthesis<sup>[<a href="#ref1" class="linklink">7</a>]</sup>. Without this gene, the bacteria will have to depend on exogenous diaminopimelate (DAP) to survive.</p>
+
                         <p>     We plan to integrate csgD, csgA, and NOS into the chromosome and merge the three plasmids of the growth switch into one, that is, clone both hicA and hicB into pCP20. This way, our total number of plasmids will be significantly reduced to one, making our engineered bacteria expression more efficient.</p>
                     </div>
+
                     </div>          
 
                 </div>
 
                 </div>
                <div class="container-fluid p-0">
 
                <div class="row no-gutters">
 
                <div class="col-lg ">
 
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                <a href="https://static.igem.org/mediawiki/2020/3/3c/T--NCKU_Tainan--design_DAP.gif" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/3/3c/T--NCKU_Tainan--design_DAP.gif" alt="" title="" style="width:100%"></a>
 
                <figcaption class="caption-design">Fig. 3. Design of biosafety chassis.</figcaption>
 
                </figure>
 
                </div>
 
                </div>
 
                </div>
 
                <h4 class="mb-0">Functional Test</h4>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    To test whether the bacteria will survive without exogenous DAP, we made plates with and without DAP. After streaking our engineered bacteria onto these plates, we can demonstrate the result by checking its phenotype. Furthermore, we ran a SDS-PAGE to confirm the function of the <i>T7</i> expression system in our engineered WM3064.</p>
 
                    </div>
 
                </div>
 
                <h4 class="mb-0">Overexpression <i>csgD</i> and <i>csgA</i></h4>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    Bacteria biofilm has been shown to exhibit extraordinary ability to help bacteria bind to biotic and abiotic surfaces[measurement reference]. We exploited this property to design one of the biosafety measures.</p>
 
                    </div>
 
                </div>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                      <p>    We engineered our bacteria to overexpress <i>CsgD</i>, a master transcription regulator of biofilm formation, and <i>CsgA</i>, the major subunit of curli fibers. Overexpression of these two proteins have been reported to increase biofilm formation[measurement reference], which we anticipated to help the bacteria bind to the contact lenses more securely, thus preventing the leakage of bacteria if the contact lens encounters any damage.</p>
 
                    </div>
 
                </div>
 
                <h4 class="mb-0">Functional Test</h4>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    We first characterized the biofilm formation using conventional congo red staining, then we developed a simple method to assess the binding ability of our engineered bacteria. For more information, please visit our <a href="https://2020.igem.org/Team:NCKU_Tainan/Measurement" class="linkinthetext">measurement page</a>.</p>
 
                    </div>
 
                </div>
 
                <h3 class="mb-0" style="margin-top: 1rem;">Growth switch</h3>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    There are several things that need to be considered before selling Eye kNOw as a product. Since Eye kNOw won’t be used by the patient immediately after being manufactured, we designed a growth switch in order to control bacteria growth in different stages of our product lifetime. We were inspired by the work of <a href="https://2019.igem.org/Team:NUS_Singapore" class="linkinthetext">iGEM NUS 2019</a> who used a toxin-antitoxin system, <i>hicA</i>-<i>hicB</i>, to control the growth of bacteria. By manipulating the toxin-antitoxin ratio in a bacteria, we can determine when the bacteria should hibernate or grow.</p>
 
                    </div>
 
                </div>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    In our design, the <i>hicB</i> antitoxin is constitutively expressed at a basal level, while the <i>hicA</i> toxin is controlled by arabinose inducible promoter. The entire <i>hicA</i> cassette is flanked with <i>FRT</i> sites, which can later be deleted by the FLP recombinase. We also added a heat-activated <i>FRT</i>-FLP recombinase system from pCP20 as an inducible switch. This design enables us to control the bacteria growth in three stages - production, storage and medication.</p>
 
                    </div>
 
                </div>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    The production stage is when we are culturing our bacteria, so we need the bacteria to be able to grow normally. After the production process, the bacteria needs to be stored in the contact lens until it can be used. During the storage stage, <i>hicA</i> will be induced to hibernate the bacteria. The last stage is the medication stage, during which the contact lens will be used. When the contact lens is placed on the patient’s eye, the body temperature will activate the recombinase system and delete the hicA cassette, which will cause the bacteria to resuscitate and start producing the therapeutic agent.</p>
 
                    </div>
 
                </div>
 
                <div class="container-fluid p-0">
 
                <div class="row no-gutters">
 
                <div class="col-lg ">
 
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                <a href="https://static.igem.org/mediawiki/2020/9/9a/T--NCKU_Tainan--design_HicAB.gif" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/9/9a/T--NCKU_Tainan--design_HicAB.gif" alt="" title="" style="width:100%"></a>
 
                <figcaption class="caption-design">Fig. 4. Plasmid design for grow switch</figcaption>
 
                </figure>
 
                </div>
 
                </div>
 
                </div>
 
                <h4 class="mb-0">Functional Test</h4>
 
                <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                    <div class="flex-grow-1">                     
 
                        <p>    To verify the function of the FLP-<i>FRT</i> system, we will culture the bacteria with three plasmids, containing <i>hicA</i>, <i>hicB</i>, and <i>CI857</i> and <i>FLP</i> genes respectively. As the temperature rises to 42<sup>o</sup>C, <i>CI857</i> gene will be degraded, activating the <i>FLP</i> gene and deleting the <i>hicA</i> gene. If the <i>hicA</i> gene is present, the O.D.600 value will not increase since HicA protein represses the growth of bacteria. Hence, we can verify the function of the growth switch by measuring O.D. 600 value.</p>
 
                    </div>
 
                </div>             
 
 
             </div>
 
             </div>
         </section>
+
         </section>    
         <hr class="hrmar" />    
+
         <hr class="hrmar" />
         <section class="resume-section">
+
         <section class="resume-section" >
             <div class="resume-section-content" id="pdevice">
+
             <div class="resume-section-content" id="pgene">
                 <h2 class="mb-3">Device</h2>
+
                 <h2 class="mb-3">Eye Screen</h2>
                <h3 class="mb-0" style="margin-top: 1rem;">IOP Detector</h3>
+
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   Since there are no early symptoms of glaucoma, the public is left unaware of its presence. Therefore, early detection is needed, so we developed a brand-new IOP detector - Eye Screen. By transmitting ultrasonic waves to the patient’s cornea and analyzing the reflected signal, we can get IOP readings immediately. With Eye Screen, we can quickly find people at high risk of glaucoma, without direct contact with the eyes.</p>
+
                         <p>     We hope to promote the device to the general public in the future. With Eye Screen, users can monitor their IOP level by themselves, quickly and easily, wherever they are. These IOP values around-the-day will automatically be synchronized to the smartphone app, Eye Cloud, where they are stored and analyzed, enabling users to be informed of their risks of glaucoma in a real-time manner. It can also be placed in medical centers to increase the public's willingness to track their IOP level. Healthcare practitioners can also bring Eye Screen to long-term care institutions for IOP monitoring. We designed a compact function generator to drive the transducers, omitting the need for a conventional setup. We will also improve Arduino signal processing settings to optimize the precision of IOP readings.</p>
                     </div>
+
                     </div>          
                 
+
 
                 </div>
 
                 </div>
                <h4 class="mt-1">Functional Test</h4>
 
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                 <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                         <p>   To validate the function of Eye Screen, we adopted a gravity model to control the IOP of porcine eyeballs using the trocar system via microincision vitrectomy surgery. By adjusting the height of the saline bag connected to the eyeball, we can measure the IOP by calculating the difference in height of the saline and the eyeball. We then tested whether the amplitude of reflected signals can be proportional to the IOP according to the change in IOP.</p>
+
                         <p>     Besides, collaboration with various institutions related to glaucoma will increase the willingness to measure IOP for anyone and effectively raise awareness of glaucoma. Furthermore, artificial intelligence (AI) in healthcare and medicine is booming. Keeping up with this trend is our next step. Therefore, Eye Screen will also be an additional tool to collect data as the samples for machine learning. In the future, Eye Screen 2.0 will be launched with the ability to carry out big data analytics and offer better precision. This portable signal processing system could be applied in various fields, bringing benefits to society.</p>
                     </div>  
+
                     </div>          
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
         </section>    
+
         </section>  
 
         <hr class="hrmar" />
 
         <hr class="hrmar" />
 
         <section class="resume-section" >
 
         <section class="resume-section" >
Line 460: Line 341:
 
             <h2>References</h2>
 
             <h2>References</h2>
 
               <ol>
 
               <ol>
                 <li id="ref1">Muenster S, Lieb WS, Fabry G, et al. The Ability of Nitric Oxide to Lower Intraocular Pressure Is Dependent on Guanylyl Cyclase. <i>Investigative Opthalmology & Visual Science.</i> 2017;58(11):4826.</li>
+
                 <li id="ref1">BRENDA - Reference to 1.14.13.39; Id = 440214. Brenda-enzymes.org. Published 2017. <a href="https://www.brenda-enzymes.org/literature.php?e=1.14.13.39&r=440214" target="_blank" class="linklink">https://www.brenda-enzymes.org/literature.php?e=1.14.13.39&r=440214</a></li>
                <li id="ref2">Lam A. The effect of an artificially elevated intraocular pressure on the central corneal curvature. <i>Ophthalmic and Physiological Optics.</i> 1997;17(1):18-24.</li>
+
                 <li id="ref2">Jechlinger W, Szostak MP, Witte A, Lubitz W. Altered temperature induction sensitivity of the lambdapR/cI857 system for controlled geneEexpression inEscherichia coli. <em>FEMS Microbiology Letters</em>. 1999;173(2):347-352.</li>
                <li id="ref3">Chen G-Z, Chan I-S, Leung LKK, Lam DCC. Soft wearable contact lens sensor for continuous intraocular pressure monitoring. <i>Medical Engineering & Physics.</i> 2014;36(9):1134-1139.</li>
+
                <li id="ref4">Zhang J, Zhang Y, Li Y, et al. Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model. <i>BioMed Research International.</i> 2017;2017:1-6.</li>
+
                <li id="ref5">BRENDA - Information on EC 1.14.13.39 - nitric-oxide synthase (NADPH). Brenda-enzymes.org. <a href="https://www.brenda-enzymes.org/enzyme.php?ecno=1.14.13.39#pH%20OPTIMUM." target="_blank" class="linklink">https://www.brenda-enzymes.org/enzyme.php?ecno=1.14.13.39#pH%20OPTIMUM.</a> Published 2020. Accessed September 9, 2020.</li>
+
                 <li id="ref6">Dante RA, Neto GC, Leite A, Yunes JA, Arruda P. Plant <i>Molecular Biology.</i> 1999;41(4):551-561.</li>
+
                <li id="ref7">McLennan N, Masters M. GroE is vital for cell-wall synthesis. <i>Nature.</i> 1998;392(6672):139-139.</li>
+
 
               </ol>
 
               </ol>
 
           </div>   
 
           </div>   

Revision as of 14:45, 25 October 2020


Future

Envision the future treatment of glaucoma


Overview

This year, we have tried our best to turn our project from an idealistic concept to implementation. However, we believe that there is still a long way to go to improve our project. We have listed several strategies for further project improvement. We expect our project can make a significant impact on the world in the future.


Eye kNOW

Nitric Oxide Production

We cloned bsNOS into E. coli in order to make it produce nitric oxide. We chose bsNOS as a target gene because Bacillus subtilis is the most closely-related species that can produce a substantial amount of Nitric Oxide. Eventually, we managed to engineer E. coli to produce Nitric Oxide. In the future, we would like to try cloning nitric oxide synthase from GH3 pituitary cells[1]. The NOS from GH3 has a lower Km value with higher efficiency. It may increase the nitric oxide production efficiency of our engineered E. coli.

Growth Switch

In the current design, we used CI857 as a heat-sensing protein as a switch that regulates the promoter pR. Therefore, we have to culture our engineered bacteria under 30°C to keep the switch off. This will lead to low culture efficiency. According to research, using mutant pR can increase the culture temperature up to 36°C[2].

A mutation in the OR2 operator region of the rightward pR promoter increases the temperature stability of the pR/cI857 gene expression system. Thus gene expression is stringently repressed at temperatures up to 36°C. By doing so, we can get better production efficiency.

Applications for Ocular Diseases

Eye kNOw boasts a dynamic drug release system, one that can be applied in other situations. If we replace NOS with other enzymes, we can also develop additional dynamic treatments for intraocular pressure diseases.

Not only that, but we can also add a biosensing system into our contact lenses, allowing for the detection of pathogens or inflammation biomarkers in the eye. This way, our dynamic drug release system can be used for more applications so that more people can benefit from Eye kNOw.

Reduce the Number of Plasmidsh

We have introduced several plasmids into our engineered bacteria so that it can produce not only NO but also increase its binding affinity to the contact lens. We have also established a growth switch and kill switch so our bacteria can safely function in the contact lenses. The whole system looks perfect; however, we have designed too many plasmids to introduce into the bacteria, which may increase the burden of bacteria and cause harmful effects on them. Therefore, we hope that some genes can be integrated into the chromosome, while some plasmids can be merged to reduce the number of plasmids in the future.

We plan to integrate csgD, csgA, and NOS into the chromosome and merge the three plasmids of the growth switch into one, that is, clone both hicA and hicB into pCP20. This way, our total number of plasmids will be significantly reduced to one, making our engineered bacteria expression more efficient.


Eye Screen

We hope to promote the device to the general public in the future. With Eye Screen, users can monitor their IOP level by themselves, quickly and easily, wherever they are. These IOP values around-the-day will automatically be synchronized to the smartphone app, Eye Cloud, where they are stored and analyzed, enabling users to be informed of their risks of glaucoma in a real-time manner. It can also be placed in medical centers to increase the public's willingness to track their IOP level. Healthcare practitioners can also bring Eye Screen to long-term care institutions for IOP monitoring. We designed a compact function generator to drive the transducers, omitting the need for a conventional setup. We will also improve Arduino signal processing settings to optimize the precision of IOP readings.

Besides, collaboration with various institutions related to glaucoma will increase the willingness to measure IOP for anyone and effectively raise awareness of glaucoma. Furthermore, artificial intelligence (AI) in healthcare and medicine is booming. Keeping up with this trend is our next step. Therefore, Eye Screen will also be an additional tool to collect data as the samples for machine learning. In the future, Eye Screen 2.0 will be launched with the ability to carry out big data analytics and offer better precision. This portable signal processing system could be applied in various fields, bringing benefits to society.


References

  1. BRENDA - Reference to 1.14.13.39; Id = 440214. Brenda-enzymes.org. Published 2017. https://www.brenda-enzymes.org/literature.php?e=1.14.13.39&r=440214
  2. Jechlinger W, Szostak MP, Witte A, Lubitz W. Altered temperature induction sensitivity of the lambdapR/cI857 system for controlled geneEexpression inEscherichia coli. FEMS Microbiology Letters. 1999;173(2):347-352.