Difference between revisions of "Team:NCKU Tainan/Software"

Line 334: Line 334:
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p><b>Find the general solution of the equation below:</b></p>
+
                       <p>Find the general solution of the equation below:</p>
 
                   </div>   
 
                   </div>   
 
                   </div>  
 
                   </div>  
Line 353: Line 353:
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p>With boundary conditions:</p>
+
                       <p>With boundary and initial conditions:</p>
 
                   </div>   
 
                   </div>   
 
                   </div>
 
                   </div>
Line 365: Line 365:
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                 <a href="https://static.igem.org/mediawiki/2020/3/33/T--NCKU_Tainan--E3.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/3/33/T--NCKU_Tainan--E3.png" alt="" title="" style="width:100%"></a>
 
                 <a href="https://static.igem.org/mediawiki/2020/3/33/T--NCKU_Tainan--E3.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/3/33/T--NCKU_Tainan--E3.png" alt="" title="" style="width:100%"></a>
 +
                </figure>
 +
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 +
                <a href="https://static.igem.org/mediawiki/2020/6/6b/T--NCKU_Tainan--E4.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/6/6b/T--NCKU_Tainan--E4.png" alt="" title="" style="width:100%"></a>
 +
                </figure>
 +
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 +
                <a href="https://static.igem.org/mediawiki/2020/3/39/T--NCKU_Tainan--E5.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/3/39/T--NCKU_Tainan--E5.png" alt="" title="" style="width:100%"></a>
 
                 </figure>
 
                 </figure>
 
                 </div>
 
                 </div>
Line 372: Line 378:
 
                   <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                   <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p><b>Solution :</b></p>
+
                       <p>By adopting double Laplace transform method, we can transform the original equation:</p>
 
                   </div>   
 
                   </div>   
 
                   </div>
 
                   </div>
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p>Taking the double Laplace transform of both side of the equation.</p>
+
                        
 
                   </div>   
 
                   </div>   
 
                   </div>  
 
                   </div>  
Line 385: Line 391:
 
                 <div class="col-lg ">
 
                 <div class="col-lg ">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
                 <a href="https://static.igem.org/mediawiki/parts/1/1a/T--NCKU_Tainan--c.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/parts/1/1a/T--NCKU_Tainan--c.png" alt="" title="" style="width:100%"></a>
+
                 <a href="https://static.igem.org/mediawiki/2020/c/c2/T--NCKU_Tainan--E7.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/c/c2/T--NCKU_Tainan--E7.png" alt="" title="" style="width:100%"></a>
 +
                </figure>
 +
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 +
                <a href="https://static.igem.org/mediawiki/2020/7/73/T--NCKU_Tainan--E6.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/7/73/T--NCKU_Tainan--E6.png" alt="" title="" style="width:100%"></a>
 
                 </figure>
 
                 </figure>
 
                 </div>
 
                 </div>
Line 392: Line 401:
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p>with</p>
+
                       <p>Solving F:</p>
 
                   </div>   
 
                   </div>   
 
                   </div>  
 
                   </div>  
Line 400: Line 409:
 
                 <div class="col-lg ">
 
                 <div class="col-lg ">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
                 <a href="https://static.igem.org/mediawiki/parts/6/61/T--NCKU_Tainan--d.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/parts/6/61/T--NCKU_Tainan--d.png" alt="" title="" style="width:100%"></a>
+
                 <a href="https://static.igem.org/mediawiki/2020/5/58/T--NCKU_Tainan--E8.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/5/58/T--NCKU_Tainan--E8.png" alt="" title="" style="width:100%"></a>
 
                 </figure>
 
                 </figure>
 
                 </div>
 
                 </div>
Line 418: Line 427:
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
               <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p>taking the inverse Laplace transform with respect to q gives</p>
+
                       <p>By operating inverse double Laplace transform on F, we can get the solution of C:</p>
 
                   </div>   
 
                   </div>   
 
                   </div>  
 
                   </div>  
Line 426: Line 435:
 
                 <div class="col-lg ">
 
                 <div class="col-lg ">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
                 <a href="https://static.igem.org/mediawiki/parts/f/f9/T--NCKU_Tainan--f.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/parts/f/f9/T--NCKU_Tainan--f.png" alt="" title="" style="width:100%"></a>
+
                 <a href="https://static.igem.org/mediawiki/2020/e/e5/T--NCKU_Tainan--E9.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/2020/e/e5/T--NCKU_Tainan--E9.png" alt="" title="" style="width:100%"></a>
 
                 </figure>
 
                 </figure>
 
                 </div>
 
                 </div>
Line 434: Line 443:
 
         <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
         <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
 
                     <div class="flex-grow-1">                       
 
                     <div class="flex-grow-1">                       
                       <p>taking the inverse Laplace transform with respect to p gives the solution</p>
+
                        
 
                   </div>   
 
                   </div>   
                   </div>  
+
                   </div>                       
             
+
              <div class="container-fluid p-0">
+
                <div class="row no-gutters">
+
                <div class="col-lg ">
+
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
+
                <a href="https://static.igem.org/mediawiki/parts/0/07/T--NCKU_Tainan--g.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/parts/0/07/T--NCKU_Tainan--g.png" alt="" title="" style="width:100%"></a>
+
                </figure>
+
                </div>
+
                </div>
+
                </div>
+
             
+
              <div class="d-flex flex-column flex-md-row justify-content-between mb-2">
+
                    <div class="flex-grow-1">                     
+
                       <p>from the property of convolution, we obtained the solution.</p>
+
                  </div> 
+
                  </div>
+
             
+
              <div class="container-fluid p-0">
+
                <div class="row no-gutters">
+
                <div class="col-lg ">
+
                <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
+
                <a href="https://static.igem.org/mediawiki/parts/f/f0/T--NCKU_Tainan--h.png" target="_blank" style="width:60%"><img src="https://static.igem.org/mediawiki/parts/f/f0/T--NCKU_Tainan--h.png" alt="" title="" style="width:100%"></a>
+
                </figure>
+
                </div>
+
                </div>
+
                </div>
+
             
+
 
             </div>
 
             </div>
 
         </section>
 
         </section>

Revision as of 17:01, 26 October 2020


Software

Cloud service connecting you and me

Software in Modeling

Description

For every iGEM team, modeling is a necessary part to link wet team experimental results and dry team theories together. In most of the cases, we need to simulate the behavior of chemicals or bacteria, such as distribution or concentration of them. Scientists often utilize partial differentiation equations (PDEs) to describe those target substances’ behavior. However, PDEs usually don’t have solutions due to the lack of strategies to deal with them since the governing equation, say the heat equation, is usually involved in the distance and the time passed by, which implies it to be a function that has 2 variables. Here, we introduce a method that might help future iGEM teams to deal with PDEs—double Laplace transform.

Definition

The definition of the single-variable Laplace transform, which is what we normally adopted, is listed below:

The definition of the double-variable Laplace transform (or, double Laplace transform) has a similar form, listed below:

Notice that for single variable Laplace transform, the x domain is defined: { x | x > 0 }, so analogously, the domain of double Laplace transform, (x, y), is defined to be in the first quadrant, namely { (x, y) | x, y > 0 }.

Properties

The general properties of double Laplace transform are listed below [1]:

Solving Partial Differential Equations

We performed a solution to one example of a partial differential equation using double Laplace transform.

Find the general solution of the equation below:

With boundary and initial conditions:

By adopting double Laplace transform method, we can transform the original equation:

Solving F:

By operating inverse double Laplace transform on F, we can get the solution of C:


Software in APP

Description

In order to create a personalized IOP tracking system, we designed an app - Eye Cloud that works with Eye Screen. Eye Cloud not only displays the IOP value on the phone through the Bluetooth connection but also upload each measurement value to ThingSpeak’s personal account that is convenient for long-term tracking and observation. In addition, it can also be used as a tool for large-scale data collection to assist the development of Eye kNOw or other research related to intraocular pressure.

App Design

Fig. 1. App overviewThingSpeak.

ThingSpeak is an IoT analytics platform service that allows us to aggregate, visualize, and analyze live data streams in the cloud. We can easily send data to ThingSpeak from Eye Screen, allowing users to upload and record IOP value through a URL (your personal API Keys)

Fig. 2. ThingSpeak homepage.
  1. Sign up for ThingSpeak.

  2. Click Channels > My Channels. Create a new channel.

  3. Check the boxes next to Fields 1–3. Enter these channel setting values:

  4. Name: Eye Screen

    Field 1: IOP (mV)

  5. Click Save Channel at the bottom of the settings.

  6. Click API Keys tab and copy the write URL.

Fig. 3. ThingSpeak setting ( API Keys > write URL ).

User manual of Eye Cloud

Fig. 4. Eye cloud.
  1. This is the homepage of Eye Cloud, with our lovely logo. Click the “START” button to start.

  2. Then the next screen will ask if you have applied for a ThingSpeak account.

  3. Click “Yes! Ready to start” button to next page and wait for your IOP receiving.

    Click “No, click to apply” button to link to ThingSpeak homepage.

    Click “No,thanks” button to start directly

  4. Click “Bluetooth ” button to connect with Eye Screen when reaching this page.

  5. Bluetooth connection screen.

After the IOP value shows on the screen, click the “Record” button to upload data to your ThingSpeak’s personal account, monitoring daily or monthly measurement records.

Fig. 5. Daily measurement records.
 

References

  1. Debnath L. The Double Laplace Transforms and Their Properties with Applications to Functional, Integral and Partial Differential Equations. International Journal of Applied and Computational Mathematics. 2015;2(2):223-241.