Difference between revisions of "Team:TU Darmstadt/Project/Biofilm"

Line 25: Line 25:
  
 
   <div class="col-10 col-sm-12 col-xl-10">
 
   <div class="col-10 col-sm-12 col-xl-10">
 +
 +
     
  
 
         <div class="headline" id="Chapter 1">
 
         <div class="headline" id="Chapter 1">
            <h1>
 
          <i>Bacillus subtilis</i> and biofilm formation
 
            </h1>
 
 
        </div>
 
 
<!----------Insert TEXT Here --------->
 
<div class="headline" >
 
<h4>
 
<i>Bacillus subtilis</i>
 
</h4>
 
</div>
 
 
<p>
 
We aim to convert micropollutants
 
in wastewater treatment plants using an
 
enzyme-producing biofilm and came to the
 
decision that Bacillus subtilis is the best
 
  choice as our biofilm forming organism.
 
</p>
 
 
<p>
 
<i>Bacillus subtilis</i> is a gram-positive bacterium which is usually found in soil.
 
Gram-positive bacteria only have one cell membrane and are thus often used for protein secretion<sup id="cite_ref-1"><a href="#cite_note-1">[1]</a></sup>. 
 
On the one hand, secreting proteins is beneficial in protein production because no cell disruption is
 
  necessary to collect the protein and the formation of inclusion bodies can be prevented<sup id="cite_ref-2"><a href="#cite_note-2">[2]</a></sup>. On the
 
  other hand, and in our case specifically, we avoid the issue of bringing enzyme substrates across
 
    the membrane in the cell as well as potential cell toxicity of the substrate and degradation product.
 
    We want to leverage the ability of <i>B. subtilis</i> to secret proteins to immobilize our target enzymes
 
      in the biofilm matrix by fusing them to a matrix protein. This is easier to realize with
 
      <i>B. subtilis</i> as gram-positive model organism than with the gram-negative bacteria,
 
        e.g. <i>Escherichia coli</i>. In addition, <i>B. subtilis</i> is a facultative anaerobic
 
        organism which means it can grow in oxygenic, as well as anaerobic conditions,
 
          which can be of advantage when using the biofilm underwater in the clarifier<sup id="cite_ref-3"><a href="#cite_note-3">[3]</a></sup>.
 
</p>
 
 
<p>
 
In nature <i>B. subtilis</i> forms biofilms on plant roots as it needs a nutrient source. The
 
advantage for the plants is that <i>B. subtilis</i> protects it from pathogenic infections by funghi<sup id="cite_ref-4"><a href="#cite_note-4">[4]</a></sup>.
 
  Since <i>B. subtilis</i> is a natural biofilm former, it has been used as model organism
 
  for studying biofilms in the last years<sup id="cite_ref-4"><a href="#cite_note-4">[4]</a></sup>. By using this natural biofilm former, we do not have to
 
  worry about how our organism will form a biofilm. Furthermore, <i>B. subtilis</i> is classified as
 
    generally recognized as safe (GRAS) by the American Food and Drug Administration (FDA)<sup id="cite_ref-5"><a href="#cite_note-5">[5]</a></sup>, unlike other
 
    bacteria which are often pathogenic like <i>E. coli</i> or <i>Staphylococcus aureus</i><sup id="cite_ref-6"><a href="#cite_note-6">[6]</a></sup>. It is very
 
    important for us to use an organism which is generally safe given the fact that we want to bring it
 
    into a wastewater treatment plant.
 
</p>
 
 
<p>
 
Another characteristic of <i>B. subtilis</i> is its ability to form endospores
 
when exposed to extreme environmental conditions<sup id="cite_ref-7"><a href="#cite_note-7">[7]</a></sup>. Spores are highly resistant
 
  towards extreme temperature, desiccation, radiation and chemicals. This
 
  resistance makes spores interesting for industrial processes, e.g. by displaying
 
  enzymes on the surface of spores which can then be used in harsh reaction conditions. Furthermore,
 
  they are metabolic inactive but can germinate once nutrients are sufficiently available or when they
 
  experience high pressure<sup id="cite_ref-8"><a href="#cite_note-8">[8]</a></sup>.
 
</p>
 
 
 
<!----------Insert TEXT Here --------->
 
 
<div class="headline" >
 
<h4>
 
Biofilm formation
 
</h4>
 
</div>
 
 
        <div class="headline" id="Chapter 2">
 
 
             <h1>
 
             <h1>
 
                 Biofilm engineering
 
                 Biofilm engineering
Line 121: Line 55:
  
  
         <div class="headline" id="Chapter 3">
+
         <div class="headline" id="Chapter 2">
 
             <h1>
 
             <h1>
 
                 Testing
 
                 Testing
Line 153: Line 87:
 
</p>
 
</p>
  
<div class="referencestd">
 
<h4 style="text-align: left"> References</h4>
 
  
<a class="anchor" id="cite_note-1"></a>
 
<a class="referencestd" href="https://doi.org/10.1007/s00253-013-4960-4"
 
target="_blank">1.Liu, L.; Liu, Y.; Shin, H. D. Developing Bacillus Spp. as a Cell Factory for Production of Microbial Enzymes and Industrially Important Biochemicals in the Context of Systems and Synthetic Biology. Applied Microbiology and Biotechnology. Springer July 11, 2013, pp 6113–6127 Doi:10.1007/s00253-013-4960-4 </a>
 
 
<a class="anchor" id="cite_note-2"></a>
 
<a class="referencestd" href="https://doi.org/10.1016/j.bbamcr.2004.02.011"
 
target="_blank">2.Westers, L.; Westers, H.; Quax, W. J. Bacillus Subtilis as Cell Factory for Pharmaceutical Proteins: A Biotechnological Approach to Optimize the Host Organism. Biochimica et Biophysica Acta - Molecular Cell Research. Elsevier November 11, 2004, pp 299–310 Doi:10.1016/j.bbamcr.2004.02.011 </a>
 
 
<a class="anchor" id="cite_note-3"></a>
 
<a class="referencestd" href="https://doi.org/10.1078/0723-2020-00108"
 
target="_blank">3.Clements, L. D.; Miller, B. S.; Streips, U. N. Comparative Growth Analysis of the Facultative Anaerobes Bacillus Subtilis, Bacillus Licheniformis, and Escherichia Coli. Syst. Appl. Microbiol. 2002, 25 (2), 284–286 Doi:10.1078/0723-2020-00108</a>
 
 
<a class="anchor" id="cite_note-4"></a>
 
<a class="referencestd" href="https://doi.org/10.1038/nrmicro2960"
 
target="_blank">4. Vlamakis, H.; Chai, Y.; Beauregard, P. Sticking Together: Building a Biofilm the Bacillus Subtilis Way. Nature Reviews Microbiology. NIH Public Access March 2013, pp 157–168 Doi:10.1038/nrmicro2960 </a>
 
 
<a class="anchor" id="cite_note-5"></a>
 
<a class="referencestd" href="https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list"
 
target="_blank">5. Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List) | FDA https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list (accessed Aug 27, 2020) </a>
 
 
<a class="anchor" id="cite_note-6"></a>
 
<a class="referencestd" href="https://doi.org/10.1093/femsre/fuv015"
 
target="_blank">6.Hobley, L.; Harkins, C.; MacPhee, C. E. Giving Structure to the Biofilm Matrix: An Overview of Individual Strategies and Emerging Common Themes. FEMS Microbiology Reviews. Oxford University Press June 8, 2015, pp 649–669 Doi:10.1093/femsre/fuv015 </a>
 
 
<a class="anchor" id="cite_note-7"></a>
 
<a class="referencestd" href="https://doi.org/10.1101/2020.08.30.273821"
 
target="_blank">7. Karava, M.​; Gockel, P.; Kabisch, J. Bacillus Subtilis​ Spore Surface Display of Photodecarboxylase for the Transformation of Lipids to Hydrocarbons. bioRxiv 2020, 2020.08.30.273821 Doi:10.1101/2020.08.30.273821 </a>
 
 
<a class="anchor" id="cite_note-8"></a>
 
<a class="referencestd" href="https://doi.org/10.1128/AEM.71.10.5879-5887.2005"
 
target="_blank">8.Black, E. P.; Koziol-Dube, K.; Guan, D. Factors Influencing Germination of Bacillus Subtilis Spores via Activation of Nutrient Receptors by High Pressure. Appl. Environ. Microbiol. 2005, 71 (10), 5879–5887 Doi:10.1128/AEM.71.10.5879-5887.2005 </a>
 
</div>
 
  
 
<!----------Insert TEXT Here --------->
 
<!----------Insert TEXT Here --------->

Revision as of 16:14, 3 October 2020



Biofilm engineering

Displaying our degradation enzymes in the biofilm matrix

SinR knockout

Obviation of Sporulation and sigF knockout

final Bacillus Subtilis

Testing

Flowchamber

AFM

Assay small molecule sorption into the biofilm

We want to produce our pollutant-degrading enzymes fused to one of the Bacillus subtilis biofilm-forming proteins, the major protein component (TasA). This way it will be displayed in the matrix of the biofilm. We need to make sure that the substances are able to enter the biofilm to be converted by our displayed enzymes. Here we focused on the sorption of Diclofenac because it poses the biggest issue in wastewater treatment plants. Torresi et al. recently established an assay to measure the uptake of small molecules into biofilms of various thickness on which our assay is based on1.

We grow the biofilm directly on carriers used in waste water treatment to make the experiment as realistic as possible. After the biofilm is formed on the carriers, we test the Diclofenac uptake. Therefore, we incubate the carriers with different concentrations of Diclofenac and take samples of both the solution and the biofilm at certain time points. The biofilm sample is resuspended in water, centrifuged and washed repeatedly. After that, the cells are lysed via sonification and the suspension is centrifuged again to clear the lysate. The supernatants of this step and the samples of the Diclofenac solutions are quantified via UV after HPLC separation. If diclofenac is absorbed by the biofilm at the assayed concentrations, we will do the same with concentrations that can be found in waste water in Germany and then analyze the taken samples via LC-MS because it is more sensitive than HPLC with UV detection2.
Importantly, plastics has shown adsorption of hydrophobic substances3. On that account, we perform the same assay with an empty carrier in Diclofenac solution to see potential adsorption to the carrier itself.