Difference between revisions of "Team:TU Darmstadt/Partnership/Experts And Literature"

Line 114: Line 114:
 
                             <dd><b>Expertise:</b> Microbial genomics and biofilm formation</dd>
 
                             <dd><b>Expertise:</b> Microbial genomics and biofilm formation</dd>
 
                             <dd><b>Find them here:</b> <a href= "https://cos.northeastern.edu/people/yunrong-chai/" target="_blank">https://cos.northeastern.edu/people/yunrong-chai/</a></dd>
 
                             <dd><b>Find them here:</b> <a href= "https://cos.northeastern.edu/people/yunrong-chai/" target="_blank">https://cos.northeastern.edu/people/yunrong-chai/</a></dd>
                             <dd><b>Helped us with:</b> Improvement of B. subtilis for our needs, fusion proteins with TasA</dd>
+
                             <dd><b>Helped us with:</b> Improvement of <i>B.&nbsp;subtilis</i> for our needs, fusion proteins with TasA</dd>
 
                         </dl>
 
                         </dl>
 
                         <br>
 
                         <br>
Line 120: Line 120:
 
                             <dt><a href= "https://2020.igem.org/Team:TU_Darmstadt/Integrated_Human_Practices" target="_blank">Prof. Dr. Jörg Stülke</a></dt>
 
                             <dt><a href= "https://2020.igem.org/Team:TU_Darmstadt/Integrated_Human_Practices" target="_blank">Prof. Dr. Jörg Stülke</a></dt>
 
                             <dd>Professor of Microbiology at the Institute for Microbiology and Genetics in Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences</dd>
 
                             <dd>Professor of Microbiology at the Institute for Microbiology and Genetics in Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences</dd>
                             <dd><b>Expertise:</b> <i>Bacillus subtilis</i></dd>
+
                             <dd><b>Expertise:</b> <i>Bacillus&nbsp;subtilis</i></dd>
 
                             <dd><b>Find them here:</b> <a href="https://www.uni-goettingen.de/en/58040.html" target="_blank">https://www.uni-goettingen.de/en/58040.html</a></dd>
 
                             <dd><b>Find them here:</b> <a href="https://www.uni-goettingen.de/en/58040.html" target="_blank">https://www.uni-goettingen.de/en/58040.html</a></dd>
                             <dd><b>Helped us with:</b> Provided the tasA sinR knockout strain (GP1622), lab advice, advice on <i>B. subtilis</i></dd>
+
                             <dd><b>Helped us with:</b> Provided the tasA sinR knockout strain (GP1622), lab advice, advice on <i>B.&nbsp;subtilis</i></dd>
 
                         </dl>
 
                         </dl>
  
Line 350: Line 350:
 
                     <a class="referencestd" href="https://doi.org/10.1186/2191-0855-3-63" target="_blank">Margot, J.; Bennati-Granier, C.; Maillard, J. Bacterial versus Fungal Laccase: Potential for Micropollutant Degradation; 2013; Vol. 3. DOI:/10.1186/2191-0855-3-63.</a>
 
                     <a class="referencestd" href="https://doi.org/10.1186/2191-0855-3-63" target="_blank">Margot, J.; Bennati-Granier, C.; Maillard, J. Bacterial versus Fungal Laccase: Potential for Micropollutant Degradation; 2013; Vol. 3. DOI:/10.1186/2191-0855-3-63.</a>
 
                     <br>
 
                     <br>
                     <b>Evaluation and comparison of laccase-producing organisms, particularly useful for the comparison of <i>T. versicolor</i> and <i>S. cyaneus</i>.</b>
+
                     <b>Evaluation and comparison of laccase-producing organisms, particularly useful for the comparison of <i>T.&nbsp;versicolor</i> and <i>S.&nbsp;cyaneus</i>.</b>
 
                     <br><br>
 
                     <br><br>
                     <a class="referencestd" href="https://doi.org/10.1016/j.jbiotec.2011.11.021" target="_blank">Kittl R, Mueangtoom K, Gonaus C,  A chloride tolerant laccase from the plant pathogen ascomycete <i>Botrytis aclada</i> expressed at high levels in Pichia pastoris. J Biotechnol. 2012 Jan 20;157(2):304-14. doi: 10.1016/j.jbiotec.2011.11.021. Epub 2011 Dec 9. PMID: 22178779. DOI:10.1016/j.jbiotec.2011.11.02.</a>
+
                     <a class="referencestd" href="https://doi.org/10.1016/j.jbiotec.2011.11.021" target="_blank">Kittl R, Mueangtoom K, Gonaus C,  A chloride tolerant laccase from the plant pathogen ascomycete <i>Botrytis&nbsp;aclada</i> expressed at high levels in <i>Pichia&nbsp;pastoris</i>. J Biotechnol. 2012 Jan 20;157(2):304-14. doi: 10.1016/j.jbiotec.2011.11.021. Epub 2011 Dec 9. PMID: 22178779. DOI:10.1016/j.jbiotec.2011.11.02.</a>
 
                     <br>
 
                     <br>
                     <b><i>Botrytis aclada</i> laccase (BaLac) is discussed at length in this paper as a viable option for a laccase with a low pI and chloride tolerant construct, factors which normally limit laccase effectiveness.</b>
+
                     <b><i>Botrytis&nbsp;aclada</i> laccase (BaLac) is discussed at length in this paper as a viable option for a laccase with a low pI and chloride tolerant construct, factors which normally limit laccase effectiveness.</b>
 
                     <br><br>
 
                     <br><br>
                     <a class="referencestd" href="https://doi.org/10.1038/s41598-017-13734-0" target="_blank">Scheiblbrandner, S., Breslmayr, E., Csarman, F. Evolving stability and pH-dependent activity of the high redox potential <i>Botrytis aclada</i> laccase for enzymatic fuel cells. Sci Rep 7, 13688 (2017). DOI:10.1038/s41598-017-13734-0.</a>
+
                     <a class="referencestd" href="https://doi.org/10.1038/s41598-017-13734-0" target="_blank">Scheiblbrandner, S., Breslmayr, E., Csarman, F. Evolving stability and pH-dependent activity of the high redox potential <i>Botrytis&nbsp;aclada</i> laccase for enzymatic fuel cells. Sci Rep 7, 13688 (2017). DOI:10.1038/s41598-017-13734-0.</a>
 
                     <br>
 
                     <br>
                     <b>Experiments that delve into increasing the pH optimum of <i>Botrytis aclada</i> laccase (BaLac), a laccase with a low pI and chloride tolerant construct, factors which normally limit laccase effectiveness.</b>
+
                     <b>Experiments that delve into increasing the pH optimum of <i>Botrytis&nbsp;aclada</i> laccase (BaLac), a laccase with a low pI and chloride tolerant construct, factors which normally limit laccase effectiveness.</b>
 
                     <br><br>
 
                     <br><br>
  
Line 365: Line 365:
 
                     <b>Investigation over the marine laccase know as Lac1326, an extremely thermostable laccase construct.</b>
 
                     <b>Investigation over the marine laccase know as Lac1326, an extremely thermostable laccase construct.</b>
 
                     <br><br>
 
                     <br><br>
                     <a class="referencestd" href="https://doi.org/10.1016/j.chemosphere.2016.01.019" target="_blank">Zeng, J.; Zhu, Q.; Wu, Y. Oxidation of Polycyclic Aromatic Hydrocarbons Using Bacillus Subtilis CotA with High Laccase Activity and Copper Independence. Chemosphere 2016, 148, 1–7. DOI:10.1016/j.chemosphere.2016.01.019.</a>
+
                     <a class="referencestd" href="https://doi.org/10.1016/j.chemosphere.2016.01.019" target="_blank">Zeng, J.; Zhu, Q.; Wu, Y. Oxidation of Polycyclic Aromatic Hydrocarbons Using <i>Bacillus&nbsp;Subtilis</i> CotA with High Laccase Activity and Copper Independence. Chemosphere 2016, 148, 1–7. DOI:10.1016/j.chemosphere.2016.01.019.</a>
 
                     <br>
 
                     <br>
 
                     <b>The bacterial laccases CueO and CotA are compared regarding the oxidation rates of 15 different polycyclic aromatic hydrocarbons.</b>
 
                     <b>The bacterial laccases CueO and CotA are compared regarding the oxidation rates of 15 different polycyclic aromatic hydrocarbons.</b>
Line 374: Line 374:
 
                     <a class="referencestd" href="https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-41000/Ricklefs%2C%20Esther_Doktorarbeit_pdf_a1.pdf" target="_blank">Ricklefs, E. Charakterisierung Einer Neuen Bakteriellen Laccase Und Deren Anwendung in Einer Multi-Enzymatischen Kaskade Zur Synthese von Lignanen. https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-41000/Ricklefs%2C%20Esther_Doktorarbeit_pdf_a1.pdf (accessed on Oct 13, 2020)</a>
 
                     <a class="referencestd" href="https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-41000/Ricklefs%2C%20Esther_Doktorarbeit_pdf_a1.pdf" target="_blank">Ricklefs, E. Charakterisierung Einer Neuen Bakteriellen Laccase Und Deren Anwendung in Einer Multi-Enzymatischen Kaskade Zur Synthese von Lignanen. https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-41000/Ricklefs%2C%20Esther_Doktorarbeit_pdf_a1.pdf (accessed on Oct 13, 2020)</a>
 
                     <br>
 
                     <br>
                     <b>A new bacterial laccase from Corynebacterium glutamicum has been characterized and analysed. Furthermore bacterial laccases were used for multi-enzymatic cascades for fine chemical production.</b>
+
                     <b>A new bacterial laccase from <i>Corynebacterium&nbsp;glutamicum</i> has been characterized and analysed. Furthermore bacterial laccases were used for multi-enzymatic cascades for fine chemical production.</b>
  
  
Line 391: Line 391:
 
             <div class="dropdowncontent">
 
             <div class="dropdowncontent">
 
                 <div class="dropdowncontenttext"> <!-- in dieses div kommt der eigentliche content-->
 
                 <div class="dropdowncontenttext"> <!-- in dieses div kommt der eigentliche content-->
                     <a class="referencestd" href="https://doi.org/10.1080/10242422.2019.1580268" target="_blank">Alharbi, S. K.; Nghiem, L. D.; van de Merwe, J. P. Degradation of Diclofenac, Trimethoprim, Carbamazepine, and Sulfamethoxazole by Laccase from <i>Trametes Versicolor</i>: Transformation Products and Toxicity of Treated Effluent. Biocatal. Biotransformation 2019, 37 (6), 399–408. DOI:10.1080/10242422.2019.1580268 .</a>
+
                     <a class="referencestd" href="https://doi.org/10.1080/10242422.2019.1580268" target="_blank">Alharbi, S. K.; Nghiem, L. D.; van de Merwe, J. P. Degradation of Diclofenac, Trimethoprim, Carbamazepine, and Sulfamethoxazole by Laccase from <i>Trametes&nbsp;Versicolor</i>: Transformation Products and Toxicity of Treated Effluent. Biocatal. Biotransformation 2019, 37 (6), 399–408. DOI:10.1080/10242422.2019.1580268 .</a>
 
                     <br>
 
                     <br>
                     <b>Degradation products of diclofenac and carbamazepine with the laccase of <i>Trametes versicolor</i> discussed, as well as HPLC method.</b>
+
                     <b>Degradation products of diclofenac and carbamazepine with the laccase of <i>Trametes&nbsp;versicolor</i> discussed, as well as HPLC method.</b>
 
                     <br><br>
 
                     <br><br>
 
                     <a class="referencestd" href="https://doi.org/10.1007/s00018-014-1826-6" target="_blank">Jones, S. M.; Solomon, E. I. Electron Transfer and Reaction Mechanism of Laccases. Cellular and Molecular Life Sciences. Birkhauser Verlag AG March 1, 2015, pp 869–883. DOI:10.1007/s00018-014-1826-6.</a>
 
                     <a class="referencestd" href="https://doi.org/10.1007/s00018-014-1826-6" target="_blank">Jones, S. M.; Solomon, E. I. Electron Transfer and Reaction Mechanism of Laccases. Cellular and Molecular Life Sciences. Birkhauser Verlag AG March 1, 2015, pp 869–883. DOI:10.1007/s00018-014-1826-6.</a>
Line 429: Line 429:
 
                     <b>Immobilization of laccase on SiO<sub>2</sub> nanoparticles to overcome problems associated with stability and reusability of the free enzyme is presented.</b>
 
                     <b>Immobilization of laccase on SiO<sub>2</sub> nanoparticles to overcome problems associated with stability and reusability of the free enzyme is presented.</b>
 
                     <br><br>
 
                     <br><br>
                     <a class="referencestd" href="https://doi.org/10.1038/s41589-018-0169-2" target="_blank">Huang, J.; Liu, S.; Zhang, C. Programmable and Printable <i>Bacillus Subtilis</i> Biofilms as Engineered Living Materials. Nat. Chem. Biol. 2019. DOI:10.1038/s41589-018-0169-2.</a>
+
                     <a class="referencestd" href="https://doi.org/10.1038/s41589-018-0169-2" target="_blank">Huang, J.; Liu, S.; Zhang, C. Programmable and Printable <i>Bacillus&nbsp;Subtilis</i> Biofilms as Engineered Living Materials. Nat. Chem. Biol. 2019. DOI:10.1038/s41589-018-0169-2.</a>
 
                     <br>
 
                     <br>
                     <b>Immobilization of proteins by producing a fusion protein with the major protein component (TasA) of <i>Bacillus subtilis</i> biofilm is shown.</b>
+
                     <b>Immobilization of proteins by producing a fusion protein with the major protein component (TasA) of <i>Bacillus&nbsp;subtilis</i> biofilm is shown.</b>
 
                     <br><br>
 
                     <br><br>
 
                     <b>German literature:</b><br>
 
                     <b>German literature:</b><br>
Line 480: Line 480:
 
                     <br>
 
                     <br>
 
                     <a href="https://2013.igem.org/Team:TU-Munich" target="_blank">Team TU Munich in 2013:</a><br>
 
                     <a href="https://2013.igem.org/Team:TU-Munich" target="_blank">Team TU Munich in 2013:</a><br>
                     They used a laccase from <i>Bacillus pumilus</i> and EreB from <i>Escherichia coli</i> for biodegradation of Xenobiotics.
+
                     They used a laccase from <i>Bacillus&nbsp;pumilus</i> and EreB from <i>Escherichia&nbsp;coli</i> for biodegradation of Xenobiotics.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2012.igem.org/Team:Bielefeld-Germany" target="_blank"> Team Bielefeld-Germany in 2012:</a><br>
 
                     <a href="https://2012.igem.org/Team:Bielefeld-Germany" target="_blank"> Team Bielefeld-Germany in 2012:</a><br>
Line 486: Line 486:
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2018.igem.org/Team:Stockholm" target="_blank">Team Stockholm in 2018:</a><br>
 
                     <a href="https://2018.igem.org/Team:Stockholm" target="_blank">Team Stockholm in 2018:</a><br>
                     They used the laccase from <i>Trametes versicolor</i>, immobilized on magnetic beads, to inactivate sulfamethoxazole.
+
                     They used the laccase from <i>Trametes&nbsp;versicolor</i>, immobilized on magnetic beads, to inactivate sulfamethoxazole.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2019.igem.org/Team:Western_Canada" target="_blank">Team Western Canada in 2019:</a><br>
 
                     <a href="https://2019.igem.org/Team:Western_Canada" target="_blank">Team Western Canada in 2019:</a><br>
                     They also used the laccase from <i>Trametes versicolor</i> and immobilized it via the spy-tag/spy-catcher-system on the major curlin subunit (CsgA) of E. coli to clean wastewater from emerging compounds.
+
                     They also used the laccase from <i>Trametes&nbsp;versicolor</i> and immobilized it via the spy-tag/spy-catcher-system on the major curlin subunit (CsgA) of E. coli to clean wastewater from emerging compounds.
 
                     <br><br>
 
                     <br><br>
 
                     <b>Teams that used laccase for other targets:</b><br>
 
                     <b>Teams that used laccase for other targets:</b><br>
 
                     <a href="hhttps://2019.igem.org/Team:Saint_Joseph" target="_blank">Team Saint Joseph in 2019:</a><br>
 
                     <a href="hhttps://2019.igem.org/Team:Saint_Joseph" target="_blank">Team Saint Joseph in 2019:</a><br>
                     They used the laccase from <i>Trametes versicolor</i> for dye-decolorization.
+
                     They used the laccase from <i>Trametes&nbsp;versicolor</i> for dye-decolorization.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2019.igem.org/Team:Edinburgh_OG" target="_blank">Team Edinburgh OG in 2019:</a><br>
 
                     <a href="https://2019.igem.org/Team:Edinburgh_OG" target="_blank">Team Edinburgh OG in 2019:</a><br>
                     They used the laccase from <i>Bacillus pumilus</i> for dye-decolorization.
+
                     They used the laccase from <i>Bacillus&nbsp;pumilus</i> for dye-decolorization.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Description" target="_blank">Team Hong Kong HKUST in 2018:</a><br>
 
                     <a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Description" target="_blank">Team Hong Kong HKUST in 2018:</a><br>
                     They used the laccase from Escherichia coli for poly-ethylen degradation.
+
                     They used the laccase from <i>Escherichia&nbsp;coli</i> for poly-ethylen degradation.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2016.igem.org/Team:British_Columbia" target="_blank">Team British Columbia in 2016:</a><br>
 
                     <a href="https://2016.igem.org/Team:British_Columbia" target="_blank">Team British Columbia in 2016:</a><br>
                     They displayed small laccases on the cell surface of C. crescentus for degradation of lignin cellulose.
+
                     They displayed small laccases on the cell surface of <i>C.&nbsp;crescentus</i> for degradation of lignin cellulose.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2018.igem.org/Team:SHSBNU_China" target="_blank">Team SHSBNU China in 2018:</a><br>
 
                     <a href="https://2018.igem.org/Team:SHSBNU_China" target="_blank">Team SHSBNU China in 2018:</a><br>
                     They used the CotA laccase from <i>Bacillus subtilis</i> and immobilized it via spy-tag/spy-catcher-system on the major curlin subunit (CsgA) of <i>E. coli</i> for dye-decolorization.
+
                     They used the CotA laccase from <i>Bacillus&nbsp;subtilis</i> and immobilized it via spy-tag/spy-catcher-system on the major curlin subunit (CsgA) of <i>E.&nbsp;coli</i> for dye-decolorization.
 
                     <br><br>
 
                     <br><br>
 
                     <a href="https://2016.igem.org/Team:Paris_Bettencourt" target="_blank">Team Paris Bettencourt in 2016:</a><br>
 
                     <a href="https://2016.igem.org/Team:Paris_Bettencourt" target="_blank">Team Paris Bettencourt in 2016:</a><br>
                     They used six enzymes, among which the laccase from <i>Bacillus pumilus</i> to remove stains made by Anthocyanins.
+
                     They used six enzymes, among which the laccase from <i>Bacillus&nbsp;pumilus</i> to remove stains made by Anthocyanins.
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>

Revision as of 08:49, 24 October 2020

image/svg+xml - O O



On this page we have collected all literature and experts that could be helpful or interesting for future laccase-based projects. We divided them by theme (English sources listed first, then German) and summarized the core of the paper briefly for ease of use. If you have further questions about a German literature source, please do not hesitate to contact any of our teams, as we would be happy to provide you with the information you need for your project to succeed!

Experts






Literature