Team:DTU-Denmark/Design







Selecting a Chassis Fungal Organism: Aspergillus niger


In order to design a cell factory, we had to consider the choice of organism carefully. Through lectures at the university, investigation of literature, and talks with stakeholders in our Human Practices work, it became obvious that filamentous fungi have a high potential for industrial production. To make our project as industrially relevant as possible, we chose the filamentous fungi Aspergillus niger as our host, as it is commonly used in enzyme and secondary metabolite producing companies, such as Novozymes, with whom we had close contact. In order to make the work with A. niger easily accessible, we decided to provide a structured workflowof the work with A. niger with attached protocols, which can also be found on the contribution page.

The reference strain that we have used is ATCC 1015, in which we have performed all our genetic engineering studies. This strain has been altered so it is Non-Homologous End Joining (NHEJ) pathway deficient, by being ΔkusA. This forces the strain to use Homologous Direct Repair (HDR) to repair breaks in the DNA, enabling insertions/deletions (indels) to occur at targeted locations. The strain also has a deletion in the pyrG gene, which encodes for the Orotidine 5'-phosphate decarboxylase protein. Therefore, the de novo biosynthesis pathway of UMP is truncated, and the strain requires uracil or uridine to be added as supplements in the media to survive, which is used as a selection marker (Nødvig et al., 2015).




References

  1. Nødvig, C., Nielsen, J., Kogle, M., & Mortensen, U. (2015). A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLOS ONE, 10(7), e0133085. doi: 10.1371/journal.pone.0133085
  2. Nour-Eldin, H., Geu-Flores, F., & Halkier, B. (2010). USER Cloning and USER Fusion: The Ideal Cloning Techniques for Small and Big Laboratories. Plant Secondary Metabolism Engineering, 185-200. doi: 10.1007/978-1-60761-723-5_13
  3. Cairns, T. C., Feurstein, C., Zheng, X., Zheng, P., Sun, J., & Meyer, V. (2019). A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: a case study using aplD in Aspergillus niger. Biotechnology for Biofuels, 12 (1). doi: 10.1186/s13068-019-1473-0
  4. Fiedler, M. R. M., Cairns, T. C., Koch, O., Kubisch, C., & Meyer, V. (2018). Conditional Expression of the Small GTPase ArfA Impacts Secretion, Morphology, Growth, and Actin Ring Position in Aspergillus niger. Frontiers in Microbiology, 9. doi: 10.3389/fmicb.2018.00878
  5. Sun, X., Wu, H., Zhao, G., Li, Z., Wu, X., Liu, H., & Zheng, Z. (2018). Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess and Biosystems Engineering, 41 (7), 1029–1038. doi: 10.1007/s00449-018-1932-1
  6. Lin, L., Sun, Z., Li, J., Chen, Y., Liu, Q., Sun, W., & Tian, C. (2018). Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa. Microbial Cell Factories, 17 (1). doi: 10.1186/s12934-018-0944-5
  7. Sun, X., & Su, X. (2019). Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World Journal Of Microbiology And Biotechnology, 35(4). doi: 10.1007/s11274-019-2630-0
  8. Lee, I. H., Walline, R. G., & Plamann, M. (1998). Apolar growth of Neurospora crassa leads to increased secretion of extracellular proteins. Molecular Microbiology, 29 (1), 209–218. doi: 10.1046/j.1365-2958.1998.00923.x
  9. Kwon, M. J., Nitsche, B. M., Arentshorst, M., Jørgensen, T. R., Ram, A. F. J., & Meyer, V. (2013). The Transcriptomic Signature of RacA Activation and Inactivation Provides New Insights into the Morphogenetic Network of Aspergillus niger. PLoS ONE, 8 (7), e68946. doi: 10.1371/journal.pone.0068946
  10. Meyer, V., Arentshorst, M., van den Hondel, C. A. M. J. J., & Ram, A. F. J. (2008). The polarisome component SpaA localises to hyphal tips of Aspergillus niger and is important for polar growth. Fungal Genetics and Biology, 45 (2), 152–164. doi: 10.1016/j.fgb.2007.07.006
  11. Nødvig, C. S., Hoof, J. B., Kogle, M. E., Jarczynska, Z. D., Lehmbeck, J., Klitgaard, D. K., & Mortensen, U. H. (2018). Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genetics and Biology, 115, 78–89. doi: 10.1016/j.fgb.2018.01.004
  12. Borin, G. P., Sanchez, C. C., de Souza, A. P., de Santana, E. S., de Souza, A. T., Leme, A. F. P., Squina, F. M., Buckeridge, M., Goldman, G. H., & Oliveira, J. V. de C. (2015). Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass. PLOS ONE, 10(6), e0129275. doi: 10.1371/journal.pone.0129275
  13. Cerqueira, G. C., Arnaud, M. B., Inglis, D. O., Skrzypek, M. S., Binkley, G., Simison, M., Miyasato, S. R., Binkley, J., Orvis, J., Shah, P., Wymore, F., Sherlock, G., & Wortman, J. R. (2014). The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Research, 42, D705–710. doi: 10.1093/nar/gkt1029
  14. Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420–423. doi: 10.1038/s41587-019-0036-z