Dubnau D. Sonenshein AL, Hoch JA, Losick R. Genetic exchange and homologous recombination, Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, 1993Washington, DCASM(pg. 555-584)

Green, A.A., Silver, P.A., Collins, J.J., Yin, P. 55328809600;7103402516;35478063700;57202899162; Toehold switches: De-novo-designed regulators of gene expression (2014) Cell, 159 (4), pp. 925-939. Cited 294 times.

Hamoen L. W, Eshuis H, Jongbloed J, Venema G., van Sinderen D. 1995; A small gene, designated comS , located within the coding region of the fourth amino acid-activation domain of srfA , is required for competence development in Bacillus subtilis. Mol Microbiol15:55–63

Hamoen, L., Venema, G., & Kuipers, O. (2003). Controlling competence in Bacillus subtilis: Shared use of regulators. Microbiology. 149:9-17. Retrieved May 15, 2014, from

Hong, F., Ma, D., Wu, K., Mina, L.A., Luiten, R.C., Liu, Y., Yan, H., Green, A.A. 57214766484;57189763666;57215219536;14037633900;57206179773;57216667908;7403395897;55328809600; Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators (2020) Cell, 180 (5), pp. 1018-1032.e16. Cited 5 times.

Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. 2004 Jul;22(7):841-7. doi: 10.1038/nbt986. Epub 2004 Jun 20. PMID: 15208640.

Latanova, A., Petkov, S., Kuzmenko, Y., Kilpeläinen, A., Ivanov, A., Smirnova, O., Krotova, O., Korolev, S., Hinkula, J., Karpov, V., Isaguliants, M., & Starodubova, E. (2017). Fusion to Flaviviral Leader Peptide Targets HIV-1 Reverse Transcriptase for Secretion and Reduces Its Enzymatic Activity and Ability to Induce Oxidative Stress but Has No Major Effects on Its Immunogenic Performance in DNA-Immunized Mice. Journal of immunology research, 2017, 7407136.

Maier, B., Chen, I., Dubnau, D., & Sheetz, M. P. (2004). DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nature structural & molecular biology, 11(7), 643–649.

Popp, P. F., Dotzler, M., Radeck, J., Bartels, J., and Mascher, T. (2017). The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis. Sci. Rep. 7:15058. doi: 10.1038/s41598-017-15107-z

Rahmer R, Morabbi Heravi K, Altenbuchner J. Construction of a Super-Competent Bacillus subtilis 168 Using the PmtlA-comKS Inducible Cassette Front Microbiol. 2015 Dec 21;6:1431. PMID: 2673235 Rahmer, Regine & Morabbi Heravi, Kambiz & Altenbuchner, Josef. (2016). Construction of a Super-Competent Bacillus subtilis 168 Using the P mtlA -comKS Inducible Cassette. Frontiers in microbiology. 6. 1431. 10.3389/fmicb.2015.01431.

Rosenfeld, Nitzan et al. “A fluctuation method to quantify in vivo fluorescence data.” Biophysical journal vol. 91,2 (2006): 759-66. doi:10.1529/biophysj.105.073098

Shih, J. D., and Hunter, C. P. (2011). SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 1057–1065. doi: 10.1261/rna.2596511

Turgay K, Hahn J, Burghoorn J, Dubnau D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 1998;17(22):6730-6738. doi:10.1093/emboj/17.22.6730

Wang, M., Weiberg, A., Lin, F. et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants 2, 16151 (2016).

Wenzel, M. and Altenbuchner, J. (2015) Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate‐dependent phosphotransferase system. Microbiology (United Kingdom), 161(10), 1942–1949.

Zhang XZ, Zhang YH. Microb Biotechnol. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol. 2011 Jan;4(1):98-105. PMID: 21255377

about us
Bioengineering Logo Stanford Medicine Logo Biocurious Logo
IDT logo BIOME logo