Team:OhioState/Database


Web Scraper

Compiling content from every page of 2008-2019 iGEM team's wikis to create a 46,114 row database

We used Python to create a web scraper that expanded upon the 2019 William and Mary's Outreach Database. Their database included processed content from the Education and Public Engagement and Integrated Human Practices pages from 2015-2018 teams.

We furthered their work by creating a web scraper that would first compile all of the wiki links for each team from the team's homepage URL. After that list was compiled, our second web scraper extracted the content from each team's page and compiled it in an Excel document. That document was then processed several times and formatted into the final web scraper database.

In the future, we'd like to create a better way to present the data. Due to time constraints, we were unable to create our own database structure and preexisting online structures require monthly payments were not an option because the information would become inaccessible after the completion of our project. We'd also like to expand on the web scraper to include teams from 2004-2007. The reason these teams were not initially included is because many of their wikis did not have a standard structure for their URLs, unlike the 2008-2019 team URLs.

Toxin Database

We saw the need to improve accessibility, organization, and thoroughness of the presentation of iGEM biocontainment parts, so we collected parts and made a central place to find kill switches and other biocontainment parts. This collection of parts also consists of pertinent iGEM toxin parts. The goal of this project was to increase accessibility to useful biocontainment resources to improve efficiency. The list of toxins will then be utilized in the continued computerized identification of biocontainment parts through a coded plugin on SynBioHub.

We spoke with Jet Mante regarding her work on the plugin interface that is currently being developed on synbiohub. We discussed coding and using a plugin to automatically identify and sort biocontainment systems as iGEM teams submit their parts. This code would curate parts from SynBioHub that fit certain criteria. This interface is not expected to be completed for a few more months. In the meantime, OhioState prepared logic for the biocontainment identification plugin by utilizing the key parts of biocontainment systems such as multiple toxins, promoters, and T/A systems for the various criteria of judgement.

Our first step of the plugin development was to form a toxin list which will then be used to identify biocontainment systems once the plugin interface becomes available. However, the toxin list is a useful tool by its own merit. Individual searching utilizing the toxin list is encouraged, in addition to the apparent use in the ease of finding toxins for a biocontainment system.

Here is our logic of finding these biocontainment parts and toxin lists. 

Process:

  • Manually scrape through iGEM parts registry wiki page to find all toxins
  • Induced cell death, lysis, and toxin all speak on the same process. Therefore, these terms will be utilized in the search process. 
  • First, the term “toxin” was searched
    • 772 parts resulted from the search
  • “Design “ parts were excluded from this list.
  • “Experience” parts were excluded from this list
  • Toxins specifically speaking on host infection/virulence were excluded 
  • Parts related to terms such as BPA toxin were excluded
  • Parts that were “not released, not in stock, no results, not used” were not included in the list, for they have no useful value in the creation of a biocontainment system. 
  • Parts that included red safety flags were not included. 
  • Parts that are toxins targeting eukaryotes were not included
  • Discontinued parts were not included
  • Parts that contain toxins were assessed. If anything related to containment was mentioned, the part was listed as a biocontainment part. composite parts with only a promoter or GFP were not included as a biocontainment part. If teams need these parts, they could find it under the “uses” page of toxin they are interested in
  • ccdB parts were not included on this list because iGEM headquarters removed all of those composite parts
  • Human toxic parts were not included
  • Disease causing toxins were not included
  • Deleted parts were not included
  • Excluded antimicrobial peptides 
  • Excluded toxins intended for mosquitoes
  • Excluded parts that only had the term “toxin” as a citation
  • Next steps include searching for cell death mechanism, and other “toxin” synonyms. 
Biobrick Number URL Description
BBa_K117000http://parts.igem.org/Part:BBa_K117000lysis
BBa_K112805http://parts.igem.org/Part:BBa_K112805holin phage lysis
BBa_K112301http://parts.igem.org/Part:BBa_K112301lysozyme
BBa_K150009http://parts.igem.org/Part:BBa_K150009lysis through colicin
BBa_K185048http://parts.igem.org/Part:BBa_K185048RelB antitoxin
BBa_K185047http://parts.igem.org/Part:BBa_K185047RelE toxin
BBa_K177026http://parts.igem.org/Part:BBa_K177026 
BBa_K257002http://parts.igem.org/Part:BBa_K257002 
BBa_K314200http://parts.igem.org/Part:BBa_K314200Toxin Tse2
BBa_K314201http://parts.igem.org/Part:BBa_K314201Antitoxin Tsi2
BBa_K314202http://parts.igem.org/Part:BBa_K314202toxin antitoxin locus
BBa_K302032http://parts.igem.org/Part:BBa_K302032antitoxin to MazF
BBa_K302034http://parts.igem.org/Part:BBa_K302034toxin antitoxin cluster
BBa_K302033http://parts.igem.org/Part:BBa_K302033toxin MazF
BBa_K733003http://parts.igem.org/Part:BBa_K733003antitoxin
BBa_K733004http://parts.igem.org/Part:BBa_K733004RBS+ydcE toxin
BBa_K875009http://parts.igem.org/Part:BBa_K875009The LL 37 cathelicidin is a human antimicrobial peptide
BBa_K314200http://parts.igem.org/Part:BBa_K314200TSE2 toxin
BBa_K823044http://parts.igem.org/Part:BBa_K823044Maz F toxin
BBa_K831001http://parts.igem.org/Part:BBa_K831001HipB antitoxin
BBa_K726006http://parts.igem.org/Part:BBa_K726006antitoxin of the yefM-yoeB toxin-antitoxin system.
BBa_K811002http://parts.igem.org/Part:BBa_K811002toxin
BBa_K831000http://parts.igem.org/Part:BBa_K831000HipA7 toxin
BBa_K1075032http://parts.igem.org/Part:BBa_K1075032ccdA - Antitoxin in ccdA/ccdB system
BBa_K1074009http://parts.igem.org/Part:BBa_K1074009toxin
BBa_K1188002http://parts.igem.org/Part:BBa_K1188002RTX (repeats-in-toxin)
BBa_K112805http://parts.igem.org/Part:BBa_K112805phage lysis toxin.
BBa_K112301http://parts.igem.org/Part:BBa_K112301lysozyme
BBa_K1493601http://parts.igem.org/Part:BBa_K1493601Kis antitoxin
BBa_K1378031http://parts.igem.org/Part:BBa_K1378031holin lysis
BBa_K1493603http://parts.igem.org/Part:BBa_K1493603antitoxin and promoter
BBa_K1351043http://parts.igem.org/Part:BBa_K1351043cannibalism toxin SDP
BBa_K1783001http://parts.igem.org/Part:BBa_K1783001"Hok/Sok Type I Toxin/Antitoxin Cassette
BBa_K1668005http://parts.igem.org/Part:BBa_K1668005CDS tcdA1 toxin
BBa_J09009http://parts.igem.org/Part:BBa_J09009tok K regulator
BBa_K257007http://parts.igem.org/Part:BBa_K257007ClyA Fusion N-term. ClyA is potent pore forming txin.
BBa_K257002http://parts.igem.org/Part:BBa_K257002ClyA_Fusion_C-Term
BBa_K185000http://parts.igem.org/Part:BBa_K185000RelE toxin+Rbs30
BBa_K185003http://parts.igem.org/Part:BBa_K185003RelE toxin+Lon protease
BBa_K185004http://parts.igem.org/Part:BBa_K185004RelE toxin+Double terminator
BBa_K257002http://parts.igem.org/Part:BBa_K257002ClyA_Fusion_C-Term
BBa_K1616009http://parts.igem.org/Part:BBa_K1616009 
BBa_K1705004http://parts.igem.org/Part:BBa_K1705004MoClo relE
BBa_K2151102http://parts.igem.org/Part:BBa_K2151102TA system
BBa_K2142001http://parts.igem.org/Part:BBa_K2142001mazE antitoxin
BBa_K2142003http://parts.igem.org/Part:BBa_K2142003mazF toxin
BBa_K1949021http://parts.igem.org/Part:BBa_K1949021Yaf N antitoxin
BBa_K2150010http://parts.igem.org/Part:BBa_K2150010EndoA toxin with a LacI gene, a Ptac promoter included
BBa_K1949030http://parts.igem.org/Part:BBa_K1949030YafO toxin
BBa_K2142006http://parts.igem.org/Part:BBa_K2142006ccdA antitoxin
BBa_K2074021http://parts.igem.org/Part:BBa_K2074021cry4Aa toxin. Cry4Aa(Codon optimization) - Extended FMDV
BBa_K1897012http://parts.igem.org/Part:BBa_K1897012Listeriolysin toxin that allows L. monocytogenes to escape from the endocytic vesicle into the cytoplasm
BBa_K1962001http://parts.igem.org/Part:BBa_K1962001Immunity Protein for Colicin Ia
BBa_K1962000http://parts.igem.org/Part:BBa_K1962000 Colicin Ia is a channel-forming bacteriocin that depolarizes the cytoplasmic inner membrane of target bacteria, leading to dissipation of cellular energy
BBa_K1962002http://parts.igem.org/Part:BBa_K1962002Truncated Colicin Ia Lacking Bacteriocin Active Domain
BBa_K2074101http://parts.igem.org/Part:BBa_K2074101Cry4Aa from Bacillus thuringiensis serovar israelensis strain BRC-LLP29
BBa_K2074105http://parts.igem.org/Part:BBa_K2074105Cyt2 from Bacillus thuringiensis serovar israelensis strain BRC-LLP29
BBa_K1962004http://parts.igem.org/Part:BBa_K1962004Immunity Protein for colicin Im-E3
BBa_K1962005http://parts.igem.org/Part:BBa_K1962005 Immunity Protein colicin Im-E9
BBa_K192006http://parts.igem.org/Part:BBa_K192006Truncated Colicin E9 Lacking Bacteriocin Active Domain
BBa_K192008http://parts.igem.org/Part:BBa_K192008Colicin E9::Ssp2 Chimera
BBa_K1907001http://parts.igem.org/Part:BBa_K1907001MlrA is an enzyme that degrades some cyanobacterial toxins
BBa_K2150102http://parts.igem.org/Part:BBa_K2150102136 toxin (yobR) CDS
BBa_K2150103http://parts.igem.org/Part:BBa_K21501031204 toxin CDS
BBa_K2150104http://parts.igem.org/Part:BBa_K21501046249 toxin CDS
BBa_K2150105http://parts.igem.org/Part:BBa_K21501051204 antitoxin CDS
BBa_K2150110http://parts.igem.org/Part:BBa_K2150110toxin N-acetyltransferase GCN5 induced by IPTG
BBa_K2152004http://parts.igem.org/Part:BBa_K2152004Bacteriophage Phi X 174 lysis gene E with T7 and RBS
BBa_K2122200http://parts.igem.org/Part:BBa_K2122200His-tagged Shiga-Like Subunit B toxin
BBa_K1937009http://parts.igem.org/Part:BBa_K1937009Epsilon/MazF : toxin and antitoxin
BBa_1937010http://parts.igem.org/Part:BBa_1937010Epsilon/MazF toxin and antitoxin in pSBBS0K-mini
BBa_K2029016http://parts.igem.org/Part:BBa_K2029016MazFC3 is part of the biological toxin-antitoxin system MazEF.
BBa_K1096002http://parts.igem.org/Part:BBa_K1096002MazF protein (E. coli)
BBa_K1096001http://parts.igem.org/Part:BBa_K1096001MazE protein (E. coli)
BBa_K2150125http://parts.igem.org/Part:BBa_K21501255980 toxin composite
BBa_K2150126http://parts.igem.org/Part:BBa_K21501264222 composite
BBa_K2150127http://parts.igem.org/Part:BBa_K21501275694 composite
BBa_K2493004http://parts.igem.org/Part:BBa_K2493004Antisense Sok. The Sok RNA serves as the antitoxin within the Hok/Sok toxin-antitoxin system.
BBa_K2235004http://parts.igem.org/Part:BBa_K2235004Colicin E2 immunity protein
BBa_K2317001http://parts.igem.org/Part:BBa_K2317001CbeA-CbtA is one of the Escherichia coli TA systems
BBa_K2260002http://parts.igem.org/Part:BBa_K2260002HlyA is a toxin produced by E. coli that is secreted via an endogenous, single-step type one secretion system
BBa_K2449028http://parts.igem.org/Part:BBa_K2449028RelB with RBS and double terminator A toxin-antitoxin system
BBa_K2449029 http://parts.igem.org/Part:BBa_K2449029 RelE with RBS and double terminator
BBa_K2433000http://parts.igem.org/Part:BBa_K2433000IetA is the gene encoding the antitoxin
BBa_K2433001http://parts.igem.org/Part:BBa_K2433001ietS is the gene encoding the toxin
BBa_K2433002http://parts.igem.org/Part:BBa_K2433002ietAS TA
BBa_K2268005http://parts.igem.org/Part:BBa_K2268005The MazF endotoxin, codon optimized, with a native ssrA tag
BBa_K2268006http://parts.igem.org/Part:BBa_K2268006The MazF endotoxin, codon optimized, with a native ssrA tag (ANDENYALAA) appened on the C-terminus, under the control of a cI responsive promoter; followed by a reverse complement copy of the cI repressor (BBa_K2268000) under the control of a LacI responsive promoter (BBa_K2268001).
BBa_K2292002http://parts.igem.org/Part:BBa_K2292002Toxin-antitoxin mazEF
BBa_K2232009http://parts.igem.org/Part:BBa_K2232009Encodes a stable non-specific ribonuclease toxin (mazF) and its inhibitory antitoxin (mazE) in Bacillus Subtilis.
BBa_K2493002http://parts.igem.org/Part:BBa_K2493002 Hok with RBS
BBa_K2493005http://parts.igem.org/Part:BBa_K2493005 Hok Protein
BBa_K2289004http://parts.igem.org/Part:BBa_K2289004STX M30f Aptamer
BBa_K27715021http://parts.igem.org/Part:BBa_K27715021C.difficile Toxin A promoter 5' UTR
BBa_K2789004http://parts.igem.org/Part:BBa_K2789004ParD is a toxin coding gene that encodes toxins that express toxins that inhibit DNA helicase activity, thereby inhibiting bacterial reproduction.
BBa_K2789012http://parts.igem.org/Part:BBa_K2789012ParE/ ParD
BBa_K2789013http://parts.igem.org/Part:BBa_K2789013ParE/ParD
BBa_2789015http://parts.igem.org/Part:BBa_2789015ParE/ParD system
BBa_K2789016http://parts.igem.org/Part:BBa_K2789016MazF
BBa_K2789017http://parts.igem.org/Part:BBa_K2789017 MazE
BBa_K2715007http://parts.igem.org/Part:BBa_K2715007This part is designed to suppress the production of toxins TcdA and TcdB in Clostridium difficile.
BBa_K2715008http://parts.igem.org/Part:BBa_K2715008This part is designed to suppress the production of toxins TcdA and TcdB in Clostridium difficile.
BBa_K3256444http://parts.igem.org/Part:BBa_K3256444ChpBK, one of the TA modules in E. coli, is a toxic gene that will suppress cell growth and may cause cell death.
BBa_K3256443http://parts.igem.org/Part:BBa_K3256443ydfD
BBa_K3256442http://parts.igem.org/Part:BBa_K3256442yafQ is a toxic gene of the toxin-antitoxin (TA)
BBa_K3198000http://parts.igem.org/Part:BBa_K3198000HicA This part contains the toxin component of a type II toxin-antitoxin (TA) system.
BBa_K3198001http://parts.igem.org/Part:BBa_K3198001HicB This part contains the antitoxin component of a type II toxin-antitoxin (TA) system.
BBa_K3198002http://parts.igem.org/Part:BBa_K3198002RES toxin
BBa_K3198003http://parts.igem.org/Part:BBa_K3198003antitoxin Xre
BBa_K3198007http://parts.igem.org/Part:BBa_K3198007HicA-LuxABCDE
BBa_K3198008http://parts.igem.org/Part:BBa_K3198008This part contains the arabinose-inducible promoter pBAD and antitoxin component HicB of a type II toxin-antitoxin (TA) system
BBa_K2919000http://parts.igem.org/Part:BBa_K2919000ghoT toxin from E. coli K12
BBa_K3245010http://parts.igem.org/Part:BBa_K3245010 a full functional gene cluster that produces microcin B17 ( MccB17
BBa_K3036008http://parts.igem.org/Part:BBa_K3036008RelB with degradation-promoting tag RepA
BBa_K2969023http://parts.igem.org/Part:BBa_K2969023Doc is a protein usually used in bacteria toxin-antitoxin system (TA system)
BBa_K2969024http://parts.igem.org/Part:BBa_K2969024Phd is a protein usually used in bacteria toxin-antitoxin system (TA system).
BBa_K2969046http://parts.igem.org/Part:BBa_K2969046this part contains the coding gene of toxin doc protein under the promoter of CI434 pCI434.
BBa_K3143001http://parts.igem.org/Part:BBa_K3143001Doc toxin Toxic component of a type II toxin-antitoxin (TA) system.
BBa_K3143002 http://parts.igem.org/Part:BBa_K3143002 Phd antitoxin Antitoxin component of a type II toxin-antitoxin (TA) system.
BBa_K2268002http://parts.igem.org/Part:BBa_K2268002MazF-ssrA
BBa_K1897012http://parts.igem.org/Part:BBa_K1897012RelE with RBS and double terminator
BBa_K1897012http://parts.igem.org/Part:BBa_K1897012RelE with RBS and double terminator
BBa_K2268002http://parts.igem.org/Part:BBa_K2268002MazF-ssrA
BBa_K2232009http://parts.igem.org/Part:BBa_K2232009Encodes a stable non-specific ribonuclease toxin (mazF) and its inhibitory antitoxin (mazE) in Bacillus Subtilis.
BBa_K1949020http://parts.igem.org/Part:BBa_K1949020YafN is an antitoxin corresponding to toxin YafO, and YafN reverses inhibition of cell growth. ChpBK, one of the TA modules in E. coli, is a toxic gene that will suppress cell growth and may cause cell death.
BBa_K1907002http://parts.igem.org/Part:BBa_K1907002Microcystinase (MlrA) for E. coli, degrades cyanobacterial toxins
BBa_K2150121http://parts.igem.org/Part:BBa_K2150121This basic part is a CDS for toxin 4222
BBa_K2150122http://parts.igem.org/Part:BBa_K2150122This basic part is a CDS for toxin 5980
BBa_K2159123http://parts.igem.org/Part:BBa_K2159123This basic part is a CDS for toxin 5694
BBa_K2087001http://parts.igem.org/Part:BBa_K2087001 atoxic C. difficile toxin B
BBa_K2061005http://parts.igem.org/Part:BBa_K2061005This part recombinant B-subunit of the E. coli Heat Labile Toxin (LTB)
BBa_K2570022http://parts.igem.org/Part:BBa_K2570022araC+mazf+GFP This is an improved version of BBa_K1405008
BBa_K2588006 http://parts.igem.org/Part:BBa_K2588006 Cell division inhibitor cbtA
BBa_K3203071http://parts.igem.org/Part:BBa_K3203071ParE A toxin
BBa_K3202072http://parts.igem.org/Part:BBa_K3202072Kid A toxin
BBa_K3202073http://parts.igem.org/Part:BBa_K3202073 Colicin A toxin
BBa_K3203052 http://parts.igem.org/Part:BBa_K3203052 AraC-Pc-pBAD-ParE This part is designed mainly for the characterization of the toxin parE.
BBa_K3165014http://parts.igem.org/Part:BBa_K3165014ccdB (L83S)
BBa_K3165048http://parts.igem.org/Part:BBa_K3165048ccdB (L83S) under araBAD
BBa_K3203053http://parts.igem.org/Part:BBa_K3203053AraC-Pc-pBAD-Kid This part is designed mainly for the characterization of the toxin Kid.
BBa_K3203054http://parts.igem.org/Part:BBa_K3203054AraC-Pc-pBAD-Colicin E2 This part is designed mainly for the characterization of the Toxin Colicin E2.
BBa_K3143005http://parts.igem.org/Part:BBa_K3143005Phd3TAG is an ncAA-dependent antitoxin
BBa_K3256440http://parts.igem.org/Part:BBa_K3256440ccdB*
BBa_K3256441http://parts.igem.org/Part:BBa_K3256441MazF*
BBa_K3143004http://parts.igem.org/Part:BBa_K3143004Phd2TAG is an ncAA-dependent antitoxin
BBa_K3143003http://parts.igem.org/Part:BBa_K3143003Phd1TAG is an ncAA-dependent antitoxin
BBa_K3252029http://parts.igem.org/Part:BBa_K3252029V. parahaemolyticus LuxU protein coding sequence
BBa_K3333001http://parts.igem.org/Part:BBa_K3333001HA-Up
BBa_K3634011http://parts.igem.org/Part:BBa_K3634011ccdB (BsaI Removed)
BBa_K3634013http://parts.igem.org/Part:BBa_K3634013ccdAB promoter + operator
BBa_K3702192http://parts.igem.org/Part:BBa_K3702192TA system ParE2 generator
BBa_K3702193http://parts.igem.org/Part:BBa_K3702193ParD2 generator
BBa_K364202http://parts.igem.org/Part:BBa_K364202is a pro-apoptotic Bcl-2 protein.
BBa_K1616008http://parts.igem.org/Part:BBa_K1616008HokD reversed
BBa_K1820022http://parts.igem.org/Part:BBa_K1820022FspI restriction enzyme
BBa_K1820023http://parts.igem.org/Part:BBa_K1820023FspI + terminator
BBa_K2301000http://parts.igem.org/Part:BBa_K2301000T4 Holin optimized for E. coli expression
BBa_K2301001http://parts.igem.org/Part:BBa_K2301001BBa_K2301001 T4 Endolysin optimized for expression in E. coli
BBa_K2301002http://parts.igem.org/Part:BBa_K2301002T4 antiholin is a protein isolated from the T4 bacteriophage that prevents cell lysis
BBa_K112805http://parts.igem.org/Part:BBa_K112805 [T4 holin]
BBa_K2912017http://parts.igem.org/Part:BBa_K2912017 Refractile inclusion bodies
BBa_K3273001http://parts.igem.org/Part:BBa_K3273001Serratia marcescens nucA nuclease
BBa_K2912015http://parts.igem.org/Part:BBa_K2912015Trp_Lysis gene
BBa_K3273007http://parts.igem.org/Part:BBa_K3273007Mammalian Bax
BBa_K3237025http://parts.igem.org/Part:BBa_K3237025NuiA is a nuclease inhibitor protein

Literature Compilation

Problem Statement:

  • Biocontainment is an all encompassing term that is multifaceted and includes many various sub groups such as BSL level laboratories, transgenic plants, cancer, etc. Yet in regards to synthetic biology and genetic engineering, there is not an all encompassing term that describes these safeguard practices that we are trying to find. The term kill switch is a relatively new term that many articles do not incorporate in literature. There must be a standardized term incorporated into database systems that indexes these articles appropriately.

Listed here are various keywords that may describe intrinsic biocontainment. The incorporation of these words in a MESH search may aid in the finding of relevant biocontainment and killswitch literature. 

keywords:

  • biological containment
  • fail-safe
  • intrinsically contain
  • substrate-dependent
  • Dual system
  • Active biological containment (ABC) systems 
  • Biologically contained
  • Active biological containment system
  • Containment of microorganisms
  • Containment systems
  • Environmental potential of suicide genes
  • Tools for containment
  • Toxin antitoxin gene systems
  • Biosafety AND (synthetic biology OR genetically modified)
  • Off-switch
  • Microbial kill switch
  • Bacterial containment
  • Programmable artificial cells
  • Conditional suicide system

Here are useful biocontainment, killswitch, and auxotrophy papers:

  1. Wang C, Stanciu CE, Ehrhardt CJ, Yadavalli VK. Evaluation of whole cell fixation methods for the analysis of nanoscale surface features of Yersinia pestis KIM. J Microsc. 2016 Sep;263(3):260-7. doi: 10.1111/jmi.12387. Epub 2016 Feb 24. PMID: 27527609.
  2. Gallagher RR, Patel JR, Interiano AL, Rovner AJ, Isaacs FJ. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res. 2015 Feb 18;43(3):1945-54. doi: 10.1093/nar/gku1378. Epub 2015 Jan 7. PMID: 25567985; PMCID: PMC4330353. 
  3. Moe-Behrens GH, Davis R, Haynes KA. Preparing synthetic biology for the world. Front Microbiol. 2013 Jan 25;4:5. doi: 10.3389/fmicb.2013.00005. PMID: 23355834; PMCID: PMC3554958. 
  4. Čelešnik H, Tanšek A, Tahirović A, Vižintin A, Mustar J, Vidmar V, Dolinar M. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803. Biol Open. 2016 Apr 15;5(4):519-28. doi: 10.1242/bio.017129. PMID: 27029902; PMCID: PMC4890671.
  5. Howard J, Murashov V, Schulte P. Synthetic biology and occupational risk. J Occup Environ Hyg. 2017 Mar;14(3):224-236. doi: 10.1080/15459624.2016.1237031. PMID: 27754800.
  6. Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ. Recoded organisms engineered to depend on synthetic amino acids. Nature. 2015 Feb 5;518(7537):89-93. Doi: 10.1038/nature14095. Epub 2015 Jan 21. Erratum in: Nature. 2015 Nov 12;527(7577):264. PMID: 25607356; PMCID: PMC4590768.
  7. Cai Y, Agmon N, Choi WJ, Ubide A, Stracquadanio G, Caravelli K, Hao H, Bader JS, Boeke JD. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1803-8. doi: 10.1073/pnas.1424704112. Epub 2015 Jan 26. PMID: 25624482; PMCID: PMC4330768.
  8. Naorem SS, Han J, Zhang SY, Zhang J, Graham LB, Song A, Smith CV, Rashid F, Guo H. Efficient transposon mutagenesis mediated by an IPTG-controlled conditional suicide plasmid. BMC Microbiol. 2018 Oct 24;18(1):158. Doi: 10.1186/s12866-018-1319-0. PMID: 30355324; PMCID: PMC6201506.
  9. Recorbet G, Robert C, Givaudan A, Kudla B, Normand P, Faurie G. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene. Appl Environ Microbiol. 1993 May;59(5):1361-6. Doi: 10.1128/AEM.59.5.1361-1366.1993. PMID: 8517732; PMCID: PMC182090.
  10. Ahrenholtz I, Lorenz MG, Wackernagel W. A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA. Appl Environ Microbiol. 1994 Oct;60(10):3746-51. doi: 10.1128/AEM.60.10.3746-3751.1994. PMID: 7986048; PMCID: PMC201882.
  11. Balan A, Schenberg AC. A conditional suicide system for Saccharomyces cerevisiae relying on the intracellular production of the Serratia marcescens nuclease. Yeast. 2005 Feb;22(3):203-12. doi: 10.1002/yea.1203. PMID: 15704225. 
  12. Contreras A, Molin S, Ramos JL. Conditional-suicide containment system for bacteria which mineralize aromatics. Appl Environ Microbiol. 1991 May;57(5):1504-8. doi: 10.1128/AEM.57.5.1504-1508.1991. PMID: 16348490; PMCID: PMC182976.
  13. Li Q, Wu YJ. A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl Microbiol Biotechnol. 2009 Mar;82(4):749-56. doi: 10.1007/s00253-009-1857-3. Epub 2009 Jan 29. PMID: 19183984.
  14. Schweder T, Schmidt I, Herrmann H, Neubauer P, Hecker M, Hofmann K. An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells. Appl Microbiol Biotechnol. 1992 Oct;38(1):91-3. Doi: 10.1007/BF00169425. PMID: 1369014.
  15. Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against <i>Clostridium difficile</i> Infection. Front Microbiol. 2018 Sep 5;9:2080. Doi: 10.3389/fmicb.2018.02080. PMID: 30233548; PMCID: PMC6134020.
  16. Knott A, Drueppel L, Beyer T, Garke K, Berens C, Herrmann M, Hillen W. An optimized conditional suicide switch using doxycycline-dependent expression of human tBid. Cancer Biol Ther. 2005 May;4(5):532-6. doi: 10.4161/cbt.4.5.1658. Epub 2005 May 28. PMID: 15846082.
  17. Xuan W, Schultz PG. A Strategy for Creating Organisms Dependent on Noncanonical Amino Acids. Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9170-9173. doi: 10.1002/anie.201703553. Epub 2017 Jun 27. PMID: 28593724; PMCID: PMC5580492.
  18. Davison J. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):639-50. doi: 10.1007/s10295-005-0242-1. Epub 2005 Jun 23. PMID: 15973534.
  19. Tedin K, Witte A, Reisinger G, Lubitz W, Bläsi U. Evaluation of the E. coli ribosomal rrnB P1 promoter and phage-derived lysis genes for the use in a biological containment system: a concept study. J Biotechnol. 1995 Apr 15;39(2):137-48. doi: 10.1016/0168-1656(95)00003-9. PMID: 7755968.
  20. Li Q, Li J, Kang KL, Wu YJ. A safety type of genetically engineered bacterium that degrades chemical pesticides. AMB Express. 2020 Feb 18;10(1):33. doi: 10.1186/s13568-020-00967-y. PMID: 32072335; PMCID: PMC7028883.
  21. Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol. 2017 Feb 28;8:353-370. doi: 10.1146/annurev-food-030216-030256. Epub 2017 Jan 11. PMID: 28125354.
  22. Hosseini S, Curilovs A, Cutting SM. Biological Containment of Genetically Modified Bacillus subtilis. Appl Environ Microbiol. 2018 Jan 17;84(3):e02334-17. doi: 10.1128/AEM.02334-17. PMID: 29150519; PMCID: PMC5772228.
  23. Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem. 2016 Nov 30;60(4):393-410. doi: 10.1042/EBC20160013. PMID: 27903826; PMCID: PMC5264511.
  24. Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv. 2019 Nov 1;37(6):107393. doi: 10.1016/j.biotechadv.2019.04.015. Epub 2019 Apr 30. PMID: 31051208.
  25. GarcíA JL, Díaz E. Plasmids as Tools for Containment. Microbiol Spectr. 2014 Oct;2(5). doi: 10.1128/microbiolspec.PLAS-0011-2013. PMID: 26104372.
  26. Kato Y. An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system. PeerJ. 2015 Sep 15;3:e1247. Doi: 10.7717/peerj.1247. PMID: 26401457; PMCID: PMC4579030.
  27. Kimman TG, Smit E, Klein MR. Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin Microbiol Rev. 2008 Jul;21(3):403-25. doi: 10.1128/CMR.00014-08. PMID: 18625678; PMCID: PMC2493080.
  28. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003 Jul;21(7):785-9. doi: 10.1038/nbt840. Epub 2003 Jun 15. PMID: 12808464.
  29. Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK. Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol. 1993;47:139-66. doi: 10.1146/annurev.mi.47.100193.001035. PMID: 8257096.
  30. Zhou Y, Sun T, Chen Z, Song X, Chen L, Zhang W. Development of a New Biocontainment Strategy in Model Cyanobacterium <i>Synechococcus</i> Strains. ACS Synth Biol. 2019 Nov 15;8(11):2576-2584. doi: 10.1021/acssynbio.9b00282. Epub 2019 Oct 14. PMID: 31577416.
  31. Ronchel MC, Ramos JL. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol. 2001 Jun;67(6):2649-56. doi: 10.1128/AEM.67.6.2649-2656.2001. PMID: 11375176; PMCID: PMC92920.
  32. Kong W, Wanda SY, Zhang X, Bollen W, Tinge SA, Roland KL, Curtiss R 3rd. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9361-6. doi: 10.1073/pnas.0803801105. Epub 2008 Jul 7. PMID: 18607005; PMCID: PMC2453710.
  33. Jensen LB, Ramos JL, Kaneva Z, Molin S. A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Appl Environ Microbiol. 1993 Nov;59(11):3713-7. Doi: 10.1128/AEM.59.11.3713-3717.1993. PMID: 8285679; PMCID: PMC182522.
  34. Guan L, Mu W, Champeimont J, Wang Q, Wu H, Xiao J, Lubitz W, Zhang Y, Liu Q. Iron-regulated lysis of recombinant Escherichia coli in host releases protective antigen and confers biological containment. Infect Immun. 2011 Jul;79(7):2608-18. doi: 10.1128/IAI.01219-10. Epub 2011 May 2. PMID: 21536797; PMCID: PMC3191992.
  35. Motomura K, Sano K, Watanabe S, Kanbara A, Gamal Nasser AH, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. Synthetic Phosphorus Metabolic Pathway for Biosafety and Contamination Management of Cyanobacterial Cultivation. ACS Synth Biol. 2018 Sep 21;7(9):2189-2198. doi: 10.1021/acssynbio.8b00199. Epub 2018 Sep 11. PMID: 30203964.
  36. Stirling F, Silver PA. Controlling the Implementation of Transgenic Microbes: Are We Ready for What Synthetic Biology Has to Offer? Mol Cell. 2020 May 21;78(4):614-623. doi: 10.1016/j.molcel.2020.03.034. PMID: 32442504; PMCID: PMC7307494.
  37. Armstrong KA, Hershfield V, Helinski DR. Gene cloning and containment properties of plasmid Col E1 and its derivatives. Science. 1977 Apr 8;196(4286):172-4. doi: 10.1126/science.322277. PMID: 322277.
  38. Curtiss R 3rd. Biological containment and cloning vector transmissibility. J Infect Dis. 1978 May;137(5):668-75. doi: 10.1093/infdis/137.5.668. PMID: 351084.
  39. Shigemori S, Shimosato T. Applications of Genetically Modified Immunobiotics with High Immunoregulatory Capacity for Treatment of Inflammatory Bowel Diseases. Front Immunol. 2017 Jan 25;8:22. doi: 10.3389/fimmu.2017.00022. PMID: 28179904; PMCID: PMC5263139.
  40. Knudsen SM, Karlström OH. Development of efficient suicide mechanisms for biological containment of bacteria. Appl Environ Microbiol. 1991 Jan;57(1):85-92. doi: 10.1128/AEM.57.1.85-92.1991. PMID: 2036024; PMCID: PMC182668.
  41. Knudsen S, Saadbye P, Hansen LH, Collier A, Jacobsen BL, Schlundt J, Karlström OH. Development and testing of improved suicide functions for biological containment of bacteria. Appl Environ Microbiol. 1995 Mar;61(3):985-91. doi: 10.1128/AEM.61.3.985-991.1995. PMID: 7793926; PMCID: PMC167358.
  42. Steidler L, Rottiers P. Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci. 2006 Aug;1072:176-86. Doi: 10.1196/annals.1326.031. PMID: 17057198.
  43. Klemm P, Jensen LB, Molin S. A stochastic killing system for biological containment of Escherichia coli. Appl Environ Microbiol. 1995 Feb;61(2):481-6. doi: 10.1128/AEM.61.2.481-486.1995. PMID: 7574584; PMCID: PMC167306.
  44. Klingmüller W. Metabolic deprivation: a lead to containment in bacterial releases. Microb Releases. 1994 Jul;2(4):289-92. PMID: 7921354.
  45. Steidler L. Live genetically modified bacteria as drug delivery tools: at the doorstep of a new pharmacology? Expert Opin Biol Ther. 2004 Apr;4(4):439-41. doi: 10.1517/14712598.4.4.439. PMID: 15102594.
  46. Wemhoff S, Meinhardt F. Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol. 2013 Sep;97(17):7805-19. doi: 10.1007/s00253-013-4935-5. Epub 2013 May 5. PMID: 23644770.
  47. Soberón-Chávez G. Evaluation of the biological containment system based on the Escherichia coli gef gene in Pseudomonas aeruginosa W51D. Appl Microbiol Biotechnol. 1996 Dec;46(5-6):549-53. doi: 10.1007/s002530050859. PMID: 9008888.
  48. Molin S. Designing microbes for release into the environment. Sci Prog. 1992;76(300 Pt 2):139-48. PMID: 1345176.
  49. Ronchel MC, Ramos C, Jensen LB, Molin S, Ramos JL. Construction and behavior of biologically contained bacteria for environmental applications in bioremediation. Appl Environ Microbiol. 1995 Aug;61(8):2990-4. Doi: 10.1128/AEM.61.8.2990-2994.1995. PMID: 7487030; PMCID: PMC167574.
  50. Schweder T, Hofmann K, Hecker M. Escherichia coli K12 relA strains as safe hosts for expression of recombinant DNA. Appl Microbiol Biotechnol. 1995 Jan;42(5):718-23. doi: 10.1007/BF00171951. PMID: 7765912.
  51. Ronchel MC, Molina L, Witte A, Lutbiz W, Molin S, Ramos JL, Ramos C. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl Environ Microbiol. 1998 Dec;64(12):4904-11. doi: 10.1128/AEM.64.12.4904-4911.1998. PMID: 9835581; PMCID: PMC90941.
  52. Silpe JE, Bassler BL. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell. 2019 Jan 10;176(1-2):268-280.e13. Doi: 10.1016/j.cell.2018.10.059. Epub 2018 Dec 13. PMID: 30554875; PMCID: PMC6329655.
  53. Chan CT, Lee JW, Cameron DE, Bashor CJ, Collins JJ. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment. Nat Chem Biol. 2016 Feb;12(2):82-6. doi: 10.1038/nchembio.1979. Epub 2015 Dec 7. PMID: 26641934; PMCID: PMC4718764.
  54. Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch. J Am Chem Soc. 2019 Jul 17;141(28):11103-11114. doi: 10.1021/jacs.9b03300. Epub 2019 Jun 26. PMID: 31241330.
  55. Stirling F, Bitzan L, O'Keefe S, Redfield E, Oliver JWK, Way J, Silver PA. Rational Design of Evolutionarily Stable Microbial Kill Switches. Mol Cell. 2017 Nov 16;68(4):686-697.e3. doi: 10.1016/j.molcel.2017.10.033. Erratum in: Mol Cell. 2018 Oct 18;72(2):395. PMID: 29149596; PMCID: PMC5812007.
  56. Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu X, Hu C, Li H, Wei S, Lou C, Yu Y, Wang J. A genetically engineered <i>Escherichia coli</i> that senses and degrades tetracycline antibiotic residue. Synth Syst Biotechnol. 2018 May 31;3(3):196-203. doi: 10.1016/j.synbio.2018.05.001. PMID: 30345405; PMCID: PMC6190513.
  57. Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng. 2018 Aug 14;12:13. Doi: 10.1186/s13036-018-0105-8. PMID: 30123321; PMCID: PMC6090650.
  58. Callura JM, Dwyer DJ, Isaacs FJ, Cantor CR, Collins JJ. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15898-903. doi: 10.1073/pnas.1009747107. Epub 2010 Aug 16. PMID: 20713708; PMCID: PMC2936621.
  59. Stirling F, Naydich A, Bramante J, Barocio R, Certo M, Wellington H, Redfield E, O'Keefe S, Gao S, Cusolito A, Way J, Silver P. Synthetic Cassettes for pH-Mediated Sensing, Counting, and Containment. Cell Rep. 2020 Mar 3;30(9):3139-3148.e4. doi: 10.1016/j.celrep.2020.02.033. PMID: 32130913.
  60. Jones L, Kumar J, Mistry A, Sankar Chittoor Mana T, Perry G, Reddy VP, Obrenovich M. The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and Technological Innovation. Biomedicines. 2019 Mar 28;7(2):24. doi: 10.3390/biomedicines7020024. PMID: 30925795; PMCID: PMC6631383.
  61. Osório J. Synthetic biology: Genetic kill switches--a matter of life or death. Nat Rev Genet. 2016 Feb;17(2):67. doi: 10.1038/nrg.2015.29. Epub 2015 Dec 21. PMID: 26688199.
  62. Mlynek KD, Sause WE, Moormeier DE, Sadykov MR, Hill KR, Torres VJ, Bayles KW, Brinsmade SR. Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. J Bacteriol. 2018 Mar 26;200(8):e00012-18. Doi: 10.1128/JB.00012-18. PMID: 29378891; PMCID: PMC5869476.
  63. Shi ZQ, Cai YT, Deng J, Zhao WF, Zhao CS. Host-Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23523-32. doi: 10.1021/acsami.6b07397. Epub 2016 Aug 30. PMID: 27552087.
  64. Koh M, Yao A, Gleason PR, Mills JH, Schultz PG. A General Strategy for Engineering Noncanonical Amino Acid Dependent Bacterial Growth. J Am Chem Soc. 2019 Oct 16;141(41):16213-16216. doi: 10.1021/jacs.9b08491. Epub 2019 Oct 4. PMID: 31580059; PMCID: PMC7501724.
  65. Davies JA. Synthetic Biology: Rational Pathway Design for Regenerative Medicine. Gerontology. 2016;62(5):564-70. doi: 10.1159/000440721. Epub 2015 Oct 17. PMID: 26474207.
  66. Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. PLoS Biol. 2013;11(2):e1001489. doi: 10.1371/journal.pbio.1001489. Epub 2013 Feb 19. PMID: 23431269; PMCID: PMC3576412. 
  67. Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA; Team AQA Unesp at iGEM 2017. Engineering Microbial Living Therapeutics: The Synthetic Biology Toolbox. Trends Biotechnol. 2019 Jan;37(1):100-115. Doi: 10.1016/j.tibtech.2018.09.005. Epub 2018 Oct 11. PMID: 30318171.
  68. Venkatasubramaniam A, Kanipakala T, Ganjbaksh N, Mehr R, Mukherjee I, Krishnan S, Bae T, Aman MJ, Adhikari RP. A Critical Role for HlgA in <i>Staphylococcus aureus</i> Pathogenesis Revealed by A Switch in the SaeRS Two- Component Regulatory System. Toxins (Basel). 2018 Sep 18;10(9):377. Doi: 10.3390/toxins10090377. PMID: 30231498; PMCID: PMC6162840.
  69. Stirling F, Silver PA. Controlling the Implementation of Transgenic Microbes: Are We Ready for What Synthetic Biology Has to Offer? Mol Cell. 2020 May 21;78(4):614-623. doi: 10.1016/j.molcel.2020.03.034. PMID: 32442504; PMCID: PMC7307494.




Contact Us

Instagram: @igem.osu

Our Sponsors

The Ohio State University College of Medicine

The Ohio State University Infectious Diseases Institute