Web Scraper
Compiling content from every page of 2008-2019 iGEM team's wikis to create a 46,114 row database
We used Python to create a web scraper that expanded upon the 2019 William and Mary's Outreach Database. Their database included processed content from the Education and Public Engagement and Integrated Human Practices pages from 2015-2018 teams.
We furthered their work by creating a web scraper that would first compile all of the wiki links for each team from the team's homepage URL. After that list was compiled, our second web scraper extracted the content from each team's page and compiled it in an Excel document. That document was then processed several times and formatted into the final web scraper database.
In the future, we'd like to create a better way to present the data. Due to time constraints, we were unable to create our own database structure and preexisting online structures require monthly payments were not an option because the information would become inaccessible after the completion of our project. We'd also like to expand on the web scraper to include teams from 2004-2007. The reason these teams were not initially included is because many of their wikis did not have a standard structure for their URLs, unlike the 2008-2019 team URLs.
Toxin Database
We saw the need to improve accessibility, organization, and thoroughness of the presentation of iGEM biocontainment parts, so we collected parts and made a central place to find kill switches and other biocontainment parts. This collection of parts also consists of pertinent iGEM toxin parts. The goal of this project was to increase accessibility to useful biocontainment resources to improve efficiency. The list of toxins will then be utilized in the continued computerized identification of biocontainment parts through a coded plugin on SynBioHub.
We spoke with Jet Mante regarding her work on the plugin interface that is currently being developed on synbiohub. We discussed coding and using a plugin to automatically identify and sort biocontainment systems as iGEM teams submit their parts. This code would curate parts from SynBioHub that fit certain criteria. This interface is not expected to be completed for a few more months. In the meantime, OhioState prepared logic for the biocontainment identification plugin by utilizing the key parts of biocontainment systems such as multiple toxins, promoters, and T/A systems for the various criteria of judgement.
Our first step of the plugin development was to form a toxin list which will then be used to identify biocontainment systems once the plugin interface becomes available. However, the toxin list is a useful tool by its own merit. Individual searching utilizing the toxin list is encouraged, in addition to the apparent use in the ease of finding toxins for a biocontainment system.
Here is our logic of finding these biocontainment parts and toxin lists.
Process:
- Manually scrape through iGEM parts registry wiki page to find all toxins
- Induced cell death, lysis, and toxin all speak on the same process. Therefore, these terms will be utilized in the search process.
- First, the term “toxin” was searched
- 772 parts resulted from the search
- “Design “ parts were excluded from this list.
- “Experience” parts were excluded from this list
- Toxins specifically speaking on host infection/virulence were excluded
- Parts related to terms such as BPA toxin were excluded
- Parts that were “not released, not in stock, no results, not used” were not included in the list, for they have no useful value in the creation of a biocontainment system.
- Parts that included red safety flags were not included.
- Parts that are toxins targeting eukaryotes were not included
- Discontinued parts were not included
- Parts that contain toxins were assessed. If anything related to containment was mentioned, the part was listed as a biocontainment part. composite parts with only a promoter or GFP were not included as a biocontainment part. If teams need these parts, they could find it under the “uses” page of toxin they are interested in
- ccdB parts were not included on this list because iGEM headquarters removed all of those composite parts
- Human toxic parts were not included
- Disease causing toxins were not included
- Deleted parts were not included
- Excluded antimicrobial peptides
- Excluded toxins intended for mosquitoes
- Excluded parts that only had the term “toxin” as a citation
- Next steps include searching for cell death mechanism, and other “toxin” synonyms.
Biobrick Number | URL | Description |
---|---|---|
BBa_K117000 | http://parts.igem.org/Part:BBa_K117000 | lysis |
BBa_K112805 | http://parts.igem.org/Part:BBa_K112805 | holin phage lysis |
BBa_K112301 | http://parts.igem.org/Part:BBa_K112301 | lysozyme |
BBa_K150009 | http://parts.igem.org/Part:BBa_K150009 | lysis through colicin |
BBa_K185048 | http://parts.igem.org/Part:BBa_K185048 | RelB antitoxin |
BBa_K185047 | http://parts.igem.org/Part:BBa_K185047 | RelE toxin |
BBa_K177026 | http://parts.igem.org/Part:BBa_K177026 | |
BBa_K257002 | http://parts.igem.org/Part:BBa_K257002 | |
BBa_K314200 | http://parts.igem.org/Part:BBa_K314200 | Toxin Tse2 |
BBa_K314201 | http://parts.igem.org/Part:BBa_K314201 | Antitoxin Tsi2 |
BBa_K314202 | http://parts.igem.org/Part:BBa_K314202 | toxin antitoxin locus |
BBa_K302032 | http://parts.igem.org/Part:BBa_K302032 | antitoxin to MazF |
BBa_K302034 | http://parts.igem.org/Part:BBa_K302034 | toxin antitoxin cluster |
BBa_K302033 | http://parts.igem.org/Part:BBa_K302033 | toxin MazF |
BBa_K733003 | http://parts.igem.org/Part:BBa_K733003 | antitoxin |
BBa_K733004 | http://parts.igem.org/Part:BBa_K733004 | RBS+ydcE toxin |
BBa_K875009 | http://parts.igem.org/Part:BBa_K875009 | The LL 37 cathelicidin is a human antimicrobial peptide |
BBa_K314200 | http://parts.igem.org/Part:BBa_K314200 | TSE2 toxin |
BBa_K823044 | http://parts.igem.org/Part:BBa_K823044 | Maz F toxin |
BBa_K831001 | http://parts.igem.org/Part:BBa_K831001 | HipB antitoxin |
BBa_K726006 | http://parts.igem.org/Part:BBa_K726006 | antitoxin of the yefM-yoeB toxin-antitoxin system. |
BBa_K811002 | http://parts.igem.org/Part:BBa_K811002 | toxin |
BBa_K831000 | http://parts.igem.org/Part:BBa_K831000 | HipA7 toxin |
BBa_K1075032 | http://parts.igem.org/Part:BBa_K1075032 | ccdA - Antitoxin in ccdA/ccdB system |
BBa_K1074009 | http://parts.igem.org/Part:BBa_K1074009 | toxin |
BBa_K1188002 | http://parts.igem.org/Part:BBa_K1188002 | RTX (repeats-in-toxin) |
BBa_K112805 | http://parts.igem.org/Part:BBa_K112805 | phage lysis toxin. |
BBa_K112301 | http://parts.igem.org/Part:BBa_K112301 | lysozyme |
BBa_K1493601 | http://parts.igem.org/Part:BBa_K1493601 | Kis antitoxin |
BBa_K1378031 | http://parts.igem.org/Part:BBa_K1378031 | holin lysis |
BBa_K1493603 | http://parts.igem.org/Part:BBa_K1493603 | antitoxin and promoter |
BBa_K1351043 | http://parts.igem.org/Part:BBa_K1351043 | cannibalism toxin SDP |
BBa_K1783001 | http://parts.igem.org/Part:BBa_K1783001" | Hok/Sok Type I Toxin/Antitoxin Cassette |
BBa_K1668005 | http://parts.igem.org/Part:BBa_K1668005 | CDS tcdA1 toxin |
BBa_J09009 | http://parts.igem.org/Part:BBa_J09009 | tok K regulator |
BBa_K257007 | http://parts.igem.org/Part:BBa_K257007 | ClyA Fusion N-term. ClyA is potent pore forming txin. |
BBa_K257002 | http://parts.igem.org/Part:BBa_K257002 | ClyA_Fusion_C-Term |
BBa_K185000 | http://parts.igem.org/Part:BBa_K185000 | RelE toxin+Rbs30 |
BBa_K185003 | http://parts.igem.org/Part:BBa_K185003 | RelE toxin+Lon protease |
BBa_K185004 | http://parts.igem.org/Part:BBa_K185004 | RelE toxin+Double terminator |
BBa_K257002 | http://parts.igem.org/Part:BBa_K257002 | ClyA_Fusion_C-Term |
BBa_K1616009 | http://parts.igem.org/Part:BBa_K1616009 | |
BBa_K1705004 | http://parts.igem.org/Part:BBa_K1705004 | MoClo relE |
BBa_K2151102 | http://parts.igem.org/Part:BBa_K2151102 | TA system |
BBa_K2142001 | http://parts.igem.org/Part:BBa_K2142001 | mazE antitoxin |
BBa_K2142003 | http://parts.igem.org/Part:BBa_K2142003 | mazF toxin |
BBa_K1949021 | http://parts.igem.org/Part:BBa_K1949021 | Yaf N antitoxin |
BBa_K2150010 | http://parts.igem.org/Part:BBa_K2150010 | EndoA toxin with a LacI gene, a Ptac promoter included |
BBa_K1949030 | http://parts.igem.org/Part:BBa_K1949030 | YafO toxin |
BBa_K2142006 | http://parts.igem.org/Part:BBa_K2142006 | ccdA antitoxin |
BBa_K2074021 | http://parts.igem.org/Part:BBa_K2074021 | cry4Aa toxin. Cry4Aa(Codon optimization) - Extended FMDV |
BBa_K1897012 | http://parts.igem.org/Part:BBa_K1897012 | Listeriolysin toxin that allows L. monocytogenes to escape from the endocytic vesicle into the cytoplasm |
BBa_K1962001 | http://parts.igem.org/Part:BBa_K1962001 | Immunity Protein for Colicin Ia |
BBa_K1962000 | http://parts.igem.org/Part:BBa_K1962000 | Colicin Ia is a channel-forming bacteriocin that depolarizes the cytoplasmic inner membrane of target bacteria, leading to dissipation of cellular energy |
BBa_K1962002 | http://parts.igem.org/Part:BBa_K1962002 | Truncated Colicin Ia Lacking Bacteriocin Active Domain |
BBa_K2074101 | http://parts.igem.org/Part:BBa_K2074101 | Cry4Aa from Bacillus thuringiensis serovar israelensis strain BRC-LLP29 |
BBa_K2074105 | http://parts.igem.org/Part:BBa_K2074105 | Cyt2 from Bacillus thuringiensis serovar israelensis strain BRC-LLP29 |
BBa_K1962004 | http://parts.igem.org/Part:BBa_K1962004 | Immunity Protein for colicin Im-E3 |
BBa_K1962005 | http://parts.igem.org/Part:BBa_K1962005 | Immunity Protein colicin Im-E9 |
BBa_K192006 | http://parts.igem.org/Part:BBa_K192006 | Truncated Colicin E9 Lacking Bacteriocin Active Domain |
BBa_K192008 | http://parts.igem.org/Part:BBa_K192008 | Colicin E9::Ssp2 Chimera |
BBa_K1907001 | http://parts.igem.org/Part:BBa_K1907001 | MlrA is an enzyme that degrades some cyanobacterial toxins |
BBa_K2150102 | http://parts.igem.org/Part:BBa_K2150102 | 136 toxin (yobR) CDS |
BBa_K2150103 | http://parts.igem.org/Part:BBa_K2150103 | 1204 toxin CDS |
BBa_K2150104 | http://parts.igem.org/Part:BBa_K2150104 | 6249 toxin CDS |
BBa_K2150105 | http://parts.igem.org/Part:BBa_K2150105 | 1204 antitoxin CDS |
BBa_K2150110 | http://parts.igem.org/Part:BBa_K2150110 | toxin N-acetyltransferase GCN5 induced by IPTG |
BBa_K2152004 | http://parts.igem.org/Part:BBa_K2152004 | Bacteriophage Phi X 174 lysis gene E with T7 and RBS |
BBa_K2122200 | http://parts.igem.org/Part:BBa_K2122200 | His-tagged Shiga-Like Subunit B toxin |
BBa_K1937009 | http://parts.igem.org/Part:BBa_K1937009 | Epsilon/MazF : toxin and antitoxin |
BBa_1937010 | http://parts.igem.org/Part:BBa_1937010 | Epsilon/MazF toxin and antitoxin in pSBBS0K-mini |
BBa_K2029016 | http://parts.igem.org/Part:BBa_K2029016 | MazFC3 is part of the biological toxin-antitoxin system MazEF. |
BBa_K1096002 | http://parts.igem.org/Part:BBa_K1096002 | MazF protein (E. coli) |
BBa_K1096001 | http://parts.igem.org/Part:BBa_K1096001 | MazE protein (E. coli) |
BBa_K2150125 | http://parts.igem.org/Part:BBa_K2150125 | 5980 toxin composite |
BBa_K2150126 | http://parts.igem.org/Part:BBa_K2150126 | 4222 composite |
BBa_K2150127 | http://parts.igem.org/Part:BBa_K2150127 | 5694 composite |
BBa_K2493004 | http://parts.igem.org/Part:BBa_K2493004 | Antisense Sok. The Sok RNA serves as the antitoxin within the Hok/Sok toxin-antitoxin system. |
BBa_K2235004 | http://parts.igem.org/Part:BBa_K2235004 | Colicin E2 immunity protein |
BBa_K2317001 | http://parts.igem.org/Part:BBa_K2317001 | CbeA-CbtA is one of the Escherichia coli TA systems |
BBa_K2260002 | http://parts.igem.org/Part:BBa_K2260002 | HlyA is a toxin produced by E. coli that is secreted via an endogenous, single-step type one secretion system |
BBa_K2449028 | http://parts.igem.org/Part:BBa_K2449028 | RelB with RBS and double terminator A toxin-antitoxin system |
BBa_K2449029 | http://parts.igem.org/Part:BBa_K2449029 | RelE with RBS and double terminator |
BBa_K2433000 | http://parts.igem.org/Part:BBa_K2433000 | IetA is the gene encoding the antitoxin |
BBa_K2433001 | http://parts.igem.org/Part:BBa_K2433001 | ietS is the gene encoding the toxin |
BBa_K2433002 | http://parts.igem.org/Part:BBa_K2433002 | ietAS TA |
BBa_K2268005 | http://parts.igem.org/Part:BBa_K2268005 | The MazF endotoxin, codon optimized, with a native ssrA tag |
BBa_K2268006 | http://parts.igem.org/Part:BBa_K2268006 | The MazF endotoxin, codon optimized, with a native ssrA tag (ANDENYALAA) appened on the C-terminus, under the control of a cI responsive promoter; followed by a reverse complement copy of the cI repressor (BBa_K2268000) under the control of a LacI responsive promoter (BBa_K2268001). |
BBa_K2292002 | http://parts.igem.org/Part:BBa_K2292002 | Toxin-antitoxin mazEF |
BBa_K2232009 | http://parts.igem.org/Part:BBa_K2232009 | Encodes a stable non-specific ribonuclease toxin (mazF) and its inhibitory antitoxin (mazE) in Bacillus Subtilis. |
BBa_K2493002 | http://parts.igem.org/Part:BBa_K2493002 | Hok with RBS |
BBa_K2493005 | http://parts.igem.org/Part:BBa_K2493005 | Hok Protein |
BBa_K2289004 | http://parts.igem.org/Part:BBa_K2289004 | STX M30f Aptamer |
BBa_K27715021 | http://parts.igem.org/Part:BBa_K27715021 | C.difficile Toxin A promoter 5' UTR |
BBa_K2789004 | http://parts.igem.org/Part:BBa_K2789004 | ParD is a toxin coding gene that encodes toxins that express toxins that inhibit DNA helicase activity, thereby inhibiting bacterial reproduction. |
BBa_K2789012 | http://parts.igem.org/Part:BBa_K2789012 | ParE/ ParD |
BBa_K2789013 | http://parts.igem.org/Part:BBa_K2789013 | ParE/ParD |
BBa_2789015 | http://parts.igem.org/Part:BBa_2789015 | ParE/ParD system |
BBa_K2789016 | http://parts.igem.org/Part:BBa_K2789016 | MazF |
BBa_K2789017 | http://parts.igem.org/Part:BBa_K2789017 | MazE |
BBa_K2715007 | http://parts.igem.org/Part:BBa_K2715007 | This part is designed to suppress the production of toxins TcdA and TcdB in Clostridium difficile. |
BBa_K2715008 | http://parts.igem.org/Part:BBa_K2715008 | This part is designed to suppress the production of toxins TcdA and TcdB in Clostridium difficile. |
BBa_K3256444 | http://parts.igem.org/Part:BBa_K3256444 | ChpBK, one of the TA modules in E. coli, is a toxic gene that will suppress cell growth and may cause cell death. |
BBa_K3256443 | http://parts.igem.org/Part:BBa_K3256443 | ydfD |
BBa_K3256442 | http://parts.igem.org/Part:BBa_K3256442 | yafQ is a toxic gene of the toxin-antitoxin (TA) |
BBa_K3198000 | http://parts.igem.org/Part:BBa_K3198000 | HicA This part contains the toxin component of a type II toxin-antitoxin (TA) system. |
BBa_K3198001 | http://parts.igem.org/Part:BBa_K3198001 | HicB This part contains the antitoxin component of a type II toxin-antitoxin (TA) system. |
BBa_K3198002 | http://parts.igem.org/Part:BBa_K3198002 | RES toxin |
BBa_K3198003 | http://parts.igem.org/Part:BBa_K3198003 | antitoxin Xre |
BBa_K3198007 | http://parts.igem.org/Part:BBa_K3198007 | HicA-LuxABCDE |
BBa_K3198008 | http://parts.igem.org/Part:BBa_K3198008 | This part contains the arabinose-inducible promoter pBAD and antitoxin component HicB of a type II toxin-antitoxin (TA) system |
BBa_K2919000 | http://parts.igem.org/Part:BBa_K2919000 | ghoT toxin from E. coli K12 |
BBa_K3245010 | http://parts.igem.org/Part:BBa_K3245010 | a full functional gene cluster that produces microcin B17 ( MccB17 |
BBa_K3036008 | http://parts.igem.org/Part:BBa_K3036008 | RelB with degradation-promoting tag RepA |
BBa_K2969023 | http://parts.igem.org/Part:BBa_K2969023 | Doc is a protein usually used in bacteria toxin-antitoxin system (TA system) |
BBa_K2969024 | http://parts.igem.org/Part:BBa_K2969024 | Phd is a protein usually used in bacteria toxin-antitoxin system (TA system). |
BBa_K2969046 | http://parts.igem.org/Part:BBa_K2969046 | this part contains the coding gene of toxin doc protein under the promoter of CI434 pCI434. |
BBa_K3143001 | http://parts.igem.org/Part:BBa_K3143001 | Doc toxin Toxic component of a type II toxin-antitoxin (TA) system. |
BBa_K3143002 | http://parts.igem.org/Part:BBa_K3143002 | Phd antitoxin Antitoxin component of a type II toxin-antitoxin (TA) system. |
BBa_K2268002 | http://parts.igem.org/Part:BBa_K2268002 | MazF-ssrA |
BBa_K1897012 | http://parts.igem.org/Part:BBa_K1897012 | RelE with RBS and double terminator |
BBa_K1897012 | http://parts.igem.org/Part:BBa_K1897012 | RelE with RBS and double terminator |
BBa_K2268002 | http://parts.igem.org/Part:BBa_K2268002 | MazF-ssrA |
BBa_K2232009 | http://parts.igem.org/Part:BBa_K2232009 | Encodes a stable non-specific ribonuclease toxin (mazF) and its inhibitory antitoxin (mazE) in Bacillus Subtilis. |
BBa_K1949020 | http://parts.igem.org/Part:BBa_K1949020 | YafN is an antitoxin corresponding to toxin YafO, and YafN reverses inhibition of cell growth. ChpBK, one of the TA modules in E. coli, is a toxic gene that will suppress cell growth and may cause cell death. |
BBa_K1907002 | http://parts.igem.org/Part:BBa_K1907002 | Microcystinase (MlrA) for E. coli, degrades cyanobacterial toxins |
BBa_K2150121 | http://parts.igem.org/Part:BBa_K2150121 | This basic part is a CDS for toxin 4222 |
BBa_K2150122 | http://parts.igem.org/Part:BBa_K2150122 | This basic part is a CDS for toxin 5980 |
BBa_K2159123 | http://parts.igem.org/Part:BBa_K2159123 | This basic part is a CDS for toxin 5694 |
BBa_K2087001 | http://parts.igem.org/Part:BBa_K2087001 | atoxic C. difficile toxin B |
BBa_K2061005 | http://parts.igem.org/Part:BBa_K2061005 | This part recombinant B-subunit of the E. coli Heat Labile Toxin (LTB) |
BBa_K2570022 | http://parts.igem.org/Part:BBa_K2570022 | araC+mazf+GFP This is an improved version of BBa_K1405008 |
BBa_K2588006 | http://parts.igem.org/Part:BBa_K2588006 | Cell division inhibitor cbtA |
BBa_K3203071 | http://parts.igem.org/Part:BBa_K3203071 | ParE A toxin |
BBa_K3202072 | http://parts.igem.org/Part:BBa_K3202072 | Kid A toxin |
BBa_K3202073 | http://parts.igem.org/Part:BBa_K3202073 | Colicin A toxin |
BBa_K3203052 | http://parts.igem.org/Part:BBa_K3203052 | AraC-Pc-pBAD-ParE This part is designed mainly for the characterization of the toxin parE. |
BBa_K3165014 | http://parts.igem.org/Part:BBa_K3165014 | ccdB (L83S) |
BBa_K3165048 | http://parts.igem.org/Part:BBa_K3165048 | ccdB (L83S) under araBAD |
BBa_K3203053 | http://parts.igem.org/Part:BBa_K3203053 | AraC-Pc-pBAD-Kid This part is designed mainly for the characterization of the toxin Kid. |
BBa_K3203054 | http://parts.igem.org/Part:BBa_K3203054 | AraC-Pc-pBAD-Colicin E2 This part is designed mainly for the characterization of the Toxin Colicin E2. |
BBa_K3143005 | http://parts.igem.org/Part:BBa_K3143005 | Phd3TAG is an ncAA-dependent antitoxin |
BBa_K3256440 | http://parts.igem.org/Part:BBa_K3256440 | ccdB* |
BBa_K3256441 | http://parts.igem.org/Part:BBa_K3256441 | MazF* |
BBa_K3143004 | http://parts.igem.org/Part:BBa_K3143004 | Phd2TAG is an ncAA-dependent antitoxin |
BBa_K3143003 | http://parts.igem.org/Part:BBa_K3143003 | Phd1TAG is an ncAA-dependent antitoxin |
BBa_K3252029 | http://parts.igem.org/Part:BBa_K3252029 | V. parahaemolyticus LuxU protein coding sequence |
BBa_K3333001 | http://parts.igem.org/Part:BBa_K3333001 | HA-Up |
BBa_K3634011 | http://parts.igem.org/Part:BBa_K3634011 | ccdB (BsaI Removed) |
BBa_K3634013 | http://parts.igem.org/Part:BBa_K3634013 | ccdAB promoter + operator |
BBa_K3702192 | http://parts.igem.org/Part:BBa_K3702192 | TA system ParE2 generator |
BBa_K3702193 | http://parts.igem.org/Part:BBa_K3702193 | ParD2 generator |
BBa_K364202 | http://parts.igem.org/Part:BBa_K364202 | is a pro-apoptotic Bcl-2 protein. |
BBa_K1616008 | http://parts.igem.org/Part:BBa_K1616008 | HokD reversed |
BBa_K1820022 | http://parts.igem.org/Part:BBa_K1820022 | FspI restriction enzyme |
BBa_K1820023 | http://parts.igem.org/Part:BBa_K1820023 | FspI + terminator |
BBa_K2301000 | http://parts.igem.org/Part:BBa_K2301000 | T4 Holin optimized for E. coli expression |
BBa_K2301001 | http://parts.igem.org/Part:BBa_K2301001 | BBa_K2301001 T4 Endolysin optimized for expression in E. coli |
BBa_K2301002 | http://parts.igem.org/Part:BBa_K2301002 | T4 antiholin is a protein isolated from the T4 bacteriophage that prevents cell lysis |
BBa_K112805 | http://parts.igem.org/Part:BBa_K112805 | [T4 holin] |
BBa_K2912017 | http://parts.igem.org/Part:BBa_K2912017 | Refractile inclusion bodies |
BBa_K3273001 | http://parts.igem.org/Part:BBa_K3273001 | Serratia marcescens nucA nuclease |
BBa_K2912015 | http://parts.igem.org/Part:BBa_K2912015 | Trp_Lysis gene |
BBa_K3273007 | http://parts.igem.org/Part:BBa_K3273007 | Mammalian Bax |
BBa_K3237025 | http://parts.igem.org/Part:BBa_K3237025 | NuiA is a nuclease inhibitor protein |
Literature Compilation
Problem Statement:
- Biocontainment is an all encompassing term that is multifaceted and includes many various sub groups such as BSL level laboratories, transgenic plants, cancer, etc. Yet in regards to synthetic biology and genetic engineering, there is not an all encompassing term that describes these safeguard practices that we are trying to find. The term kill switch is a relatively new term that many articles do not incorporate in literature. There must be a standardized term incorporated into database systems that indexes these articles appropriately.
Listed here are various keywords that may describe intrinsic biocontainment. The incorporation of these words in a MESH search may aid in the finding of relevant biocontainment and killswitch literature.
keywords:
- biological containment
- fail-safe
- intrinsically contain
- substrate-dependent
- Dual system
- Active biological containment (ABC) systems
- Biologically contained
- Active biological containment system
- Containment of microorganisms
- Containment systems
- Environmental potential of suicide genes
- Tools for containment
- Toxin antitoxin gene systems
- Biosafety AND (synthetic biology OR genetically modified)
- Off-switch
- Microbial kill switch
- Bacterial containment
- Programmable artificial cells
- Conditional suicide system
Here are useful biocontainment, killswitch, and auxotrophy papers:
- Wang C, Stanciu CE, Ehrhardt CJ, Yadavalli VK. Evaluation of whole cell fixation methods for the analysis of nanoscale surface features of Yersinia pestis KIM. J Microsc. 2016 Sep;263(3):260-7. doi: 10.1111/jmi.12387. Epub 2016 Feb 24. PMID: 27527609.
- Gallagher RR, Patel JR, Interiano AL, Rovner AJ, Isaacs FJ. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res. 2015 Feb 18;43(3):1945-54. doi: 10.1093/nar/gku1378. Epub 2015 Jan 7. PMID: 25567985; PMCID: PMC4330353.
- Moe-Behrens GH, Davis R, Haynes KA. Preparing synthetic biology for the world. Front Microbiol. 2013 Jan 25;4:5. doi: 10.3389/fmicb.2013.00005. PMID: 23355834; PMCID: PMC3554958.
- Čelešnik H, Tanšek A, Tahirović A, Vižintin A, Mustar J, Vidmar V, Dolinar M. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803. Biol Open. 2016 Apr 15;5(4):519-28. doi: 10.1242/bio.017129. PMID: 27029902; PMCID: PMC4890671.
- Howard J, Murashov V, Schulte P. Synthetic biology and occupational risk. J Occup Environ Hyg. 2017 Mar;14(3):224-236. doi: 10.1080/15459624.2016.1237031. PMID: 27754800.
- Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ. Recoded organisms engineered to depend on synthetic amino acids. Nature. 2015 Feb 5;518(7537):89-93. Doi: 10.1038/nature14095. Epub 2015 Jan 21. Erratum in: Nature. 2015 Nov 12;527(7577):264. PMID: 25607356; PMCID: PMC4590768.
- Cai Y, Agmon N, Choi WJ, Ubide A, Stracquadanio G, Caravelli K, Hao H, Bader JS, Boeke JD. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1803-8. doi: 10.1073/pnas.1424704112. Epub 2015 Jan 26. PMID: 25624482; PMCID: PMC4330768.
- Naorem SS, Han J, Zhang SY, Zhang J, Graham LB, Song A, Smith CV, Rashid F, Guo H. Efficient transposon mutagenesis mediated by an IPTG-controlled conditional suicide plasmid. BMC Microbiol. 2018 Oct 24;18(1):158. Doi: 10.1186/s12866-018-1319-0. PMID: 30355324; PMCID: PMC6201506.
- Recorbet G, Robert C, Givaudan A, Kudla B, Normand P, Faurie G. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene. Appl Environ Microbiol. 1993 May;59(5):1361-6. Doi: 10.1128/AEM.59.5.1361-1366.1993. PMID: 8517732; PMCID: PMC182090.
- Ahrenholtz I, Lorenz MG, Wackernagel W. A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA. Appl Environ Microbiol. 1994 Oct;60(10):3746-51. doi: 10.1128/AEM.60.10.3746-3751.1994. PMID: 7986048; PMCID: PMC201882.
- Balan A, Schenberg AC. A conditional suicide system for Saccharomyces cerevisiae relying on the intracellular production of the Serratia marcescens nuclease. Yeast. 2005 Feb;22(3):203-12. doi: 10.1002/yea.1203. PMID: 15704225.
- Contreras A, Molin S, Ramos JL. Conditional-suicide containment system for bacteria which mineralize aromatics. Appl Environ Microbiol. 1991 May;57(5):1504-8. doi: 10.1128/AEM.57.5.1504-1508.1991. PMID: 16348490; PMCID: PMC182976.
- Li Q, Wu YJ. A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl Microbiol Biotechnol. 2009 Mar;82(4):749-56. doi: 10.1007/s00253-009-1857-3. Epub 2009 Jan 29. PMID: 19183984.
- Schweder T, Schmidt I, Herrmann H, Neubauer P, Hecker M, Hofmann K. An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells. Appl Microbiol Biotechnol. 1992 Oct;38(1):91-3. Doi: 10.1007/BF00169425. PMID: 1369014.
- Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against <i>Clostridium difficile</i> Infection. Front Microbiol. 2018 Sep 5;9:2080. Doi: 10.3389/fmicb.2018.02080. PMID: 30233548; PMCID: PMC6134020.
- Knott A, Drueppel L, Beyer T, Garke K, Berens C, Herrmann M, Hillen W. An optimized conditional suicide switch using doxycycline-dependent expression of human tBid. Cancer Biol Ther. 2005 May;4(5):532-6. doi: 10.4161/cbt.4.5.1658. Epub 2005 May 28. PMID: 15846082.
- Xuan W, Schultz PG. A Strategy for Creating Organisms Dependent on Noncanonical Amino Acids. Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9170-9173. doi: 10.1002/anie.201703553. Epub 2017 Jun 27. PMID: 28593724; PMCID: PMC5580492.
- Davison J. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):639-50. doi: 10.1007/s10295-005-0242-1. Epub 2005 Jun 23. PMID: 15973534.
- Tedin K, Witte A, Reisinger G, Lubitz W, Bläsi U. Evaluation of the E. coli ribosomal rrnB P1 promoter and phage-derived lysis genes for the use in a biological containment system: a concept study. J Biotechnol. 1995 Apr 15;39(2):137-48. doi: 10.1016/0168-1656(95)00003-9. PMID: 7755968.
- Li Q, Li J, Kang KL, Wu YJ. A safety type of genetically engineered bacterium that degrades chemical pesticides. AMB Express. 2020 Feb 18;10(1):33. doi: 10.1186/s13568-020-00967-y. PMID: 32072335; PMCID: PMC7028883.
- Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol. 2017 Feb 28;8:353-370. doi: 10.1146/annurev-food-030216-030256. Epub 2017 Jan 11. PMID: 28125354.
- Hosseini S, Curilovs A, Cutting SM. Biological Containment of Genetically Modified Bacillus subtilis. Appl Environ Microbiol. 2018 Jan 17;84(3):e02334-17. doi: 10.1128/AEM.02334-17. PMID: 29150519; PMCID: PMC5772228.
- Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem. 2016 Nov 30;60(4):393-410. doi: 10.1042/EBC20160013. PMID: 27903826; PMCID: PMC5264511.
- Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv. 2019 Nov 1;37(6):107393. doi: 10.1016/j.biotechadv.2019.04.015. Epub 2019 Apr 30. PMID: 31051208.
- GarcíA JL, Díaz E. Plasmids as Tools for Containment. Microbiol Spectr. 2014 Oct;2(5). doi: 10.1128/microbiolspec.PLAS-0011-2013. PMID: 26104372.
- Kato Y. An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system. PeerJ. 2015 Sep 15;3:e1247. Doi: 10.7717/peerj.1247. PMID: 26401457; PMCID: PMC4579030.
- Kimman TG, Smit E, Klein MR. Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin Microbiol Rev. 2008 Jul;21(3):403-25. doi: 10.1128/CMR.00014-08. PMID: 18625678; PMCID: PMC2493080.
- Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003 Jul;21(7):785-9. doi: 10.1038/nbt840. Epub 2003 Jun 15. PMID: 12808464.
- Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK. Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol. 1993;47:139-66. doi: 10.1146/annurev.mi.47.100193.001035. PMID: 8257096.
- Zhou Y, Sun T, Chen Z, Song X, Chen L, Zhang W. Development of a New Biocontainment Strategy in Model Cyanobacterium <i>Synechococcus</i> Strains. ACS Synth Biol. 2019 Nov 15;8(11):2576-2584. doi: 10.1021/acssynbio.9b00282. Epub 2019 Oct 14. PMID: 31577416.
- Ronchel MC, Ramos JL. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol. 2001 Jun;67(6):2649-56. doi: 10.1128/AEM.67.6.2649-2656.2001. PMID: 11375176; PMCID: PMC92920.
- Kong W, Wanda SY, Zhang X, Bollen W, Tinge SA, Roland KL, Curtiss R 3rd. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9361-6. doi: 10.1073/pnas.0803801105. Epub 2008 Jul 7. PMID: 18607005; PMCID: PMC2453710.
- Jensen LB, Ramos JL, Kaneva Z, Molin S. A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Appl Environ Microbiol. 1993 Nov;59(11):3713-7. Doi: 10.1128/AEM.59.11.3713-3717.1993. PMID: 8285679; PMCID: PMC182522.
- Guan L, Mu W, Champeimont J, Wang Q, Wu H, Xiao J, Lubitz W, Zhang Y, Liu Q. Iron-regulated lysis of recombinant Escherichia coli in host releases protective antigen and confers biological containment. Infect Immun. 2011 Jul;79(7):2608-18. doi: 10.1128/IAI.01219-10. Epub 2011 May 2. PMID: 21536797; PMCID: PMC3191992.
- Motomura K, Sano K, Watanabe S, Kanbara A, Gamal Nasser AH, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. Synthetic Phosphorus Metabolic Pathway for Biosafety and Contamination Management of Cyanobacterial Cultivation. ACS Synth Biol. 2018 Sep 21;7(9):2189-2198. doi: 10.1021/acssynbio.8b00199. Epub 2018 Sep 11. PMID: 30203964.
- Stirling F, Silver PA. Controlling the Implementation of Transgenic Microbes: Are We Ready for What Synthetic Biology Has to Offer? Mol Cell. 2020 May 21;78(4):614-623. doi: 10.1016/j.molcel.2020.03.034. PMID: 32442504; PMCID: PMC7307494.
- Armstrong KA, Hershfield V, Helinski DR. Gene cloning and containment properties of plasmid Col E1 and its derivatives. Science. 1977 Apr 8;196(4286):172-4. doi: 10.1126/science.322277. PMID: 322277.
- Curtiss R 3rd. Biological containment and cloning vector transmissibility. J Infect Dis. 1978 May;137(5):668-75. doi: 10.1093/infdis/137.5.668. PMID: 351084.
- Shigemori S, Shimosato T. Applications of Genetically Modified Immunobiotics with High Immunoregulatory Capacity for Treatment of Inflammatory Bowel Diseases. Front Immunol. 2017 Jan 25;8:22. doi: 10.3389/fimmu.2017.00022. PMID: 28179904; PMCID: PMC5263139.
- Knudsen SM, Karlström OH. Development of efficient suicide mechanisms for biological containment of bacteria. Appl Environ Microbiol. 1991 Jan;57(1):85-92. doi: 10.1128/AEM.57.1.85-92.1991. PMID: 2036024; PMCID: PMC182668.
- Knudsen S, Saadbye P, Hansen LH, Collier A, Jacobsen BL, Schlundt J, Karlström OH. Development and testing of improved suicide functions for biological containment of bacteria. Appl Environ Microbiol. 1995 Mar;61(3):985-91. doi: 10.1128/AEM.61.3.985-991.1995. PMID: 7793926; PMCID: PMC167358.
- Steidler L, Rottiers P. Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci. 2006 Aug;1072:176-86. Doi: 10.1196/annals.1326.031. PMID: 17057198.
- Klemm P, Jensen LB, Molin S. A stochastic killing system for biological containment of Escherichia coli. Appl Environ Microbiol. 1995 Feb;61(2):481-6. doi: 10.1128/AEM.61.2.481-486.1995. PMID: 7574584; PMCID: PMC167306.
- Klingmüller W. Metabolic deprivation: a lead to containment in bacterial releases. Microb Releases. 1994 Jul;2(4):289-92. PMID: 7921354.
- Steidler L. Live genetically modified bacteria as drug delivery tools: at the doorstep of a new pharmacology? Expert Opin Biol Ther. 2004 Apr;4(4):439-41. doi: 10.1517/14712598.4.4.439. PMID: 15102594.
- Wemhoff S, Meinhardt F. Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol. 2013 Sep;97(17):7805-19. doi: 10.1007/s00253-013-4935-5. Epub 2013 May 5. PMID: 23644770.
- Soberón-Chávez G. Evaluation of the biological containment system based on the Escherichia coli gef gene in Pseudomonas aeruginosa W51D. Appl Microbiol Biotechnol. 1996 Dec;46(5-6):549-53. doi: 10.1007/s002530050859. PMID: 9008888.
- Molin S. Designing microbes for release into the environment. Sci Prog. 1992;76(300 Pt 2):139-48. PMID: 1345176.
- Ronchel MC, Ramos C, Jensen LB, Molin S, Ramos JL. Construction and behavior of biologically contained bacteria for environmental applications in bioremediation. Appl Environ Microbiol. 1995 Aug;61(8):2990-4. Doi: 10.1128/AEM.61.8.2990-2994.1995. PMID: 7487030; PMCID: PMC167574.
- Schweder T, Hofmann K, Hecker M. Escherichia coli K12 relA strains as safe hosts for expression of recombinant DNA. Appl Microbiol Biotechnol. 1995 Jan;42(5):718-23. doi: 10.1007/BF00171951. PMID: 7765912.
- Ronchel MC, Molina L, Witte A, Lutbiz W, Molin S, Ramos JL, Ramos C. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl Environ Microbiol. 1998 Dec;64(12):4904-11. doi: 10.1128/AEM.64.12.4904-4911.1998. PMID: 9835581; PMCID: PMC90941.
- Silpe JE, Bassler BL. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell. 2019 Jan 10;176(1-2):268-280.e13. Doi: 10.1016/j.cell.2018.10.059. Epub 2018 Dec 13. PMID: 30554875; PMCID: PMC6329655.
- Chan CT, Lee JW, Cameron DE, Bashor CJ, Collins JJ. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment. Nat Chem Biol. 2016 Feb;12(2):82-6. doi: 10.1038/nchembio.1979. Epub 2015 Dec 7. PMID: 26641934; PMCID: PMC4718764.
- Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch. J Am Chem Soc. 2019 Jul 17;141(28):11103-11114. doi: 10.1021/jacs.9b03300. Epub 2019 Jun 26. PMID: 31241330.
- Stirling F, Bitzan L, O'Keefe S, Redfield E, Oliver JWK, Way J, Silver PA. Rational Design of Evolutionarily Stable Microbial Kill Switches. Mol Cell. 2017 Nov 16;68(4):686-697.e3. doi: 10.1016/j.molcel.2017.10.033. Erratum in: Mol Cell. 2018 Oct 18;72(2):395. PMID: 29149596; PMCID: PMC5812007.
- Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu X, Hu C, Li H, Wei S, Lou C, Yu Y, Wang J. A genetically engineered <i>Escherichia coli</i> that senses and degrades tetracycline antibiotic residue. Synth Syst Biotechnol. 2018 May 31;3(3):196-203. doi: 10.1016/j.synbio.2018.05.001. PMID: 30345405; PMCID: PMC6190513.
- Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng. 2018 Aug 14;12:13. Doi: 10.1186/s13036-018-0105-8. PMID: 30123321; PMCID: PMC6090650.
- Callura JM, Dwyer DJ, Isaacs FJ, Cantor CR, Collins JJ. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15898-903. doi: 10.1073/pnas.1009747107. Epub 2010 Aug 16. PMID: 20713708; PMCID: PMC2936621.
- Stirling F, Naydich A, Bramante J, Barocio R, Certo M, Wellington H, Redfield E, O'Keefe S, Gao S, Cusolito A, Way J, Silver P. Synthetic Cassettes for pH-Mediated Sensing, Counting, and Containment. Cell Rep. 2020 Mar 3;30(9):3139-3148.e4. doi: 10.1016/j.celrep.2020.02.033. PMID: 32130913.
- Jones L, Kumar J, Mistry A, Sankar Chittoor Mana T, Perry G, Reddy VP, Obrenovich M. The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and Technological Innovation. Biomedicines. 2019 Mar 28;7(2):24. doi: 10.3390/biomedicines7020024. PMID: 30925795; PMCID: PMC6631383.
- Osório J. Synthetic biology: Genetic kill switches--a matter of life or death. Nat Rev Genet. 2016 Feb;17(2):67. doi: 10.1038/nrg.2015.29. Epub 2015 Dec 21. PMID: 26688199.
- Mlynek KD, Sause WE, Moormeier DE, Sadykov MR, Hill KR, Torres VJ, Bayles KW, Brinsmade SR. Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. J Bacteriol. 2018 Mar 26;200(8):e00012-18. Doi: 10.1128/JB.00012-18. PMID: 29378891; PMCID: PMC5869476.
- Shi ZQ, Cai YT, Deng J, Zhao WF, Zhao CS. Host-Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23523-32. doi: 10.1021/acsami.6b07397. Epub 2016 Aug 30. PMID: 27552087.
- Koh M, Yao A, Gleason PR, Mills JH, Schultz PG. A General Strategy for Engineering Noncanonical Amino Acid Dependent Bacterial Growth. J Am Chem Soc. 2019 Oct 16;141(41):16213-16216. doi: 10.1021/jacs.9b08491. Epub 2019 Oct 4. PMID: 31580059; PMCID: PMC7501724.
- Davies JA. Synthetic Biology: Rational Pathway Design for Regenerative Medicine. Gerontology. 2016;62(5):564-70. doi: 10.1159/000440721. Epub 2015 Oct 17. PMID: 26474207.
- Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. PLoS Biol. 2013;11(2):e1001489. doi: 10.1371/journal.pbio.1001489. Epub 2013 Feb 19. PMID: 23431269; PMCID: PMC3576412.
- Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA; Team AQA Unesp at iGEM 2017. Engineering Microbial Living Therapeutics: The Synthetic Biology Toolbox. Trends Biotechnol. 2019 Jan;37(1):100-115. Doi: 10.1016/j.tibtech.2018.09.005. Epub 2018 Oct 11. PMID: 30318171.
- Venkatasubramaniam A, Kanipakala T, Ganjbaksh N, Mehr R, Mukherjee I, Krishnan S, Bae T, Aman MJ, Adhikari RP. A Critical Role for HlgA in <i>Staphylococcus aureus</i> Pathogenesis Revealed by A Switch in the SaeRS Two- Component Regulatory System. Toxins (Basel). 2018 Sep 18;10(9):377. Doi: 10.3390/toxins10090377. PMID: 30231498; PMCID: PMC6162840.
- Stirling F, Silver PA. Controlling the Implementation of Transgenic Microbes: Are We Ready for What Synthetic Biology Has to Offer? Mol Cell. 2020 May 21;78(4):614-623. doi: 10.1016/j.molcel.2020.03.034. PMID: 32442504; PMCID: PMC7307494.