Team:Technion-Israel/Results

Basic Bootstrap Template



General Overview

In this page, detailed information will be provided to guide you through our adventure in the lab. Until this very moment, we have managed to purify and verify the Sybodies as well as created both the Microgel and the hydrogel. Since a relatively large number of experiments have been conducted, it’s reasonable to conclude that our designed “decoy proteins” can certainly be linked with other components as planned and eventually assemble ACT.

Gels

Bacillus subtilis Spore

Mutated ACE2

Sybodies

References
  1. Chatterjee S, Hui PCL, Kan C wai. Thermoresponsive hydrogels and their biomedical applications: Special insight into their applications in textile based transdermal therapy. Polymers (Basel). 2018;10(5). doi:10.3390/polym10050480
  2. Liu T, Hu S, Liu D, Chen S, Chen I. Biomedical nanoparticle carriers with combined. 2009. doi:10.1016/j.nantod.2008.10.011
  3. Spriestersbach A, Kubicek J, Schäfer F, Block H, Maertens B. Purification of His-Tagged Proteins. Methods Enzymol. 2015;559:1-15. doi:10.1016/bs.mie.2014.11.003
  4. Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34-45. doi:10.1016/j.ejpb.2007.02.025
  5. Lufton M, Bustan O, Eylon B hen, et al. Living Bacteria in Thermoresponsive Gel for Treating Fungal Infections. Adv Funct Mater. 2018;28(40):1-7. doi:10.1002/adfm.201801581
  6. Hagander LG, Midani HA, Kuskowski MA, Parry GJG. Quantitative sensory testing: Effect of site and pressure on vibration thresholds. Clin Neurophysiol. 2000;111(6):1066-1069. doi:10.1016/S1388-2457(00)00278-9
  7. Bornhorst, J.A., Falke J. Purification of Proteins Using Polyhistidine Affinity Tags. Methods Enzym. 2010;2000(326):245-254. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909483/pdf/nihms214279.pdf.
  8. Conti M, Falini G, Samorì B. How strong is the coordination bond between a histidine tag and Ni- nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angew Chemie - Int Ed. 2000;39(1):215-218. doi:10.1002/(SICI)1521-3773(20000103)39:1<215::AID-ANIE215>3.0.CO;2-R
  9. Mizrahi B, Irusta S, McKenna M, et al. Microgels for efficient protein purification. Adv Mater. 2011;23(36). doi:10.1002/adma.201101258
  10. Liu Y, Liu L, Li J, Du G, Chen J. Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends Biotechnol. 2019;37(5):548-562. doi:10.1016/j.tibtech.2018.10.005
  11. Henriques AO, Moran CP. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol. 2007;61:555-588. doi:10.1146/annurev.micro.61.080706.093224
  12. Iwanicki A, Piatek I, Stasiłojć M, et al. A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact. 2014;13(1):1-9. doi:10.1186/1475-2859-13-30
  13. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol. 2013;62:1379-1385. doi:10.1099/jmm.0.057372-0
  14. Team:Freiburg - 2016.igem.org. https://2016.igem.org/Team:Freiburg.
  15. Verma A, Xu K, Du T, et al. Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice. Mol Ther - Methods Clin Dev. 2019;14(September):161-170. doi:10.1016/j.omtm.2019.06.007
  16. Jannière L, Bruand C, Dusko Ehrlich S. Structurally stable Bacillus subtilis cloning vectors. Gene. 1990;87(1):53-61. doi:10.1016/0378-1119(90)90495-D
  17. Hidenori S, Henner DJ. Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene. 1986;43(1-2):85-94. doi:10.1016/0378-1119(86)90011-9
  18. Zhang X, Al-Dossary A, Hussain M, Setlow P, Li J. Applications of bacillus subtilis spores in biotechnology and advanced materials. Appl Environ Microbiol. 2020;86(17):1-13. doi:10.1128/AEM.01096-20
  19. Hwang BY, Pan JG, Kim BG, Kim JH. Functional display of active tetrameric beta-galactosidase using Bacillus subtilis spore display system. J Nanosci Nanotechnol. 2013;13(3):2313-2319. doi:10.1166/jnn.2013.6889
  20. Nicholson WL, Setlow P. Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J Bacteriol. 1990;172(1):7-14. doi:10.1128/jb.172.1.7-14.1990
  21. Setlow P. Germination of spores of Bacillus species: What we know and do not know. J Bacteriol. 2014;196(7):1297-1305. doi:10.1128/JB.01455-13
  22. Madigan et al, Brock biology of microorganisms, twelve edition. pp 91- 95.
  23. ALDERMAN DJ. Malachite green: a review. J Fish Dis. 1985;8(3):289-298. doi:10.1111/j.1365-2761.1985.tb00945.x
  24. XXL THE USB OF MERCUROCHROME AND MODI- FIED MERCUROCHROME AS BIOLOGICAL STAINS leu D . Herrmann , Westervelt Dennis and Dallas D . Dedrick.
  25. Petersen RL. Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors. 2017;7(4). doi:10.3390/bios7040049
  26. Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-450. doi:10.1038/nrmicro2147
  27. De Genst E, Silence K, Decanniere K, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103(12):4586-4591. doi:10.1073/pnas.0505379103
  28. Iizasa E, Nagano Y. Highly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/Escherichia coli shuttle vectors. Biotechniques. 2006;40(1):79-83. doi:10.2144/000112041
  29. Procko E. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2. Preprint. bioRxiv. 2020;2020.03.16.994236. Published 2020 May 11. doi:10.1101/2020.03.16.994236
  30. Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020;53(3):425-435. doi:10.1016/j.jmii.2020.04.015
  31. Inducible K, Natesh R, Schwager SLU, Sturrock ED. Crystal structure of the human enzyme – lisinopril complex. Nature. 2003;1429(1995):1427-1429.
  32. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):1-9. doi:10.1128/jvi.00127-20
  33. PyRosetta. http://www.pyrosetta.org/.
  34. Hamer-Casterman, Atarchouch, T C, Muyldermans S, Robinson G, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(June):446-448. https://www.nature.com/articles/363446a0.pdf.
  35. Muyldermans S. Nanobodies: Natural single-domain antibodies. Annu Rev Biochem. 2013;82:775-797. doi:10.1146/annurev-biochem-063011-092449.
  36. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126-1136. doi:10.1038/nbt1142
  37. Lufton M, Bustan O, Eylon B hen, et al. Living Bacteria in Thermoresponsive Gel for Treating Fungal Infections. Adv Funct Mater. 2018;28(40):1-7. doi:10.1002/adfm.201801581
  38. Zimmermann I, Egloff P, Hutter CAJ, et al. Generation of synthetic nanobodies against delicate proteins. Nat Protoc. 2020;15(5):1707-1741. doi:10.1038/s41596-020-0304-x
  39. Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell. 2019;176(3):479-490.e12. doi:10.1016/j.cell.2018.12.006
  40. Hutter CAJ, Timachi MH, Hürlimann LM, et al. The extracellular gate shapes the energy profile of an ABC exporter. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-09892-6
  41. Walter JD, Hutter CAJ, Zimmermann I, et al. Sybodies targeting the SARS-CoV-2 receptor-binding domain. 2020.
  42. McMahon C, Baier A, Zheng S, et al. Platform for rapid nanobody discovery in vitro. bioRxiv. 2017:151043. doi:10.1101/151043
  43. Moutel S, Bery N, Bernard V, et al. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife. 2016;5(JULY):1-31. doi:10.7554/eLife.16228
  44. Muyldermans S. A guide to: generation and design of nanobodies. FEBS J. 2020. doi:10.1111/febs.15515
  45. Albert S, Arndt C, Feldmann A, et al. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology. 2017;6(4):1-17. doi:10.1080/2162402X.2017.1287246
  46. Levine BL, Miskin J, Wonnacott K, Keir C. Global Manufacturing of CAR T Cell Therapy. Mol Ther - Methods Clin Dev. 2017;4(March):92-101. doi:10.1016/j.omtm.2016.12.006
  47. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377(26):2531-2544. doi:10.1056/NEJMoa1707447
  48. Xie YJ, Dougan M, Jailkhani N, et al. Erratum: Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice (Proceedings of the National Academy of Sciences of the United States of America (2019) 116:7624-7631)Doi:10.1073/pnas.1817147116). Proc Natl Acad Sci U S A. 2019;116(33):16656. doi:10.1073/pnas.1912487116




Footer

Department of Biotechnology & Food Engineering
Technion – Israel Institute of Technology
Haifa 32000, Israel

  • igem2020.technion@gmail.com