Difference between revisions of "Team:CCU Taiwan/Model"

m
m
Line 266: Line 266:
 
             <section id="rep">
 
             <section id="rep">
 
                 <h2>Repulsion between gold nanoparticles</h2>
 
                 <h2>Repulsion between gold nanoparticles</h2>
                 <p>To assess this potential problem, we used DLVO theory to calculate the repulsion between gold nanoparticles to estimate the number of gold nanoparticles that would bind to a virus particle. The structure of dengue virus is icosahedral, and there are nine E proteins on each surface. The distances between the potential binding sites can be obtained from the structure in the protein data bank (1K4R).
+
                 <p>To assess this potential problem, we used DLVO theory to calculate the repulsion between gold nanoparticles to estimate the number of gold nanoparticles that would bind to a virus particle. The structure of dengue virus is icosahedral, and there are nine E proteins on each surface. The distances between the potential binding sites can be obtained from the structure in protein data bank (1K4R).
 
DLVO theory can be described as follows,</p>
 
DLVO theory can be described as follows,</p>
 
                 <br>
 
                 <br>
Line 275: Line 275:
 
                   W<sub>r</sub>(D): electrostatic interaction energy<br>
 
                   W<sub>r</sub>(D): electrostatic interaction energy<br>
 
                   A: Hamaker constant = 2.5×10<sup>-19</sup> J<br>
 
                   A: Hamaker constant = 2.5×10<sup>-19</sup> J<br>
                   R: radius = 1.3x10<sup>-8</sup> m<br>
+
                   R: radius = 1.3x10<sup>-8</sup> m (based on the size of gold nanoparticles)<br>
 
                   C: center to center distance<br>
 
                   C: center to center distance<br>
 
                   D: C-R<br>
 
                   D: C-R<br>
 
                   ε: permittivity of vacuum = 8.854x10<sup>-12</sup> F/m<br>
 
                   ε: permittivity of vacuum = 8.854x10<sup>-12</sup> F/m<br>
 
                   ε<sub>0</sub>: dielectric of solution = 80.4 (at 20°C)<br>
 
                   ε<sub>0</sub>: dielectric of solution = 80.4 (at 20°C)<br>
                   &Psi;<sub>&delta;</sub><sup>2</sup>: Stern layer potential (zeta potential) = 0.001794 V<br>
+
                   &Psi;<sub>&delta;</sub><sup>2</sup>: Stern layer potential (zeta potential) = 1.794 mV<br>
                   κ<sup>-1</sup>: diffuse layer thickness = 7.95x10-10 m<br>
+
                   κ<sup>-1</sup>: diffuse layer thickness = 7.95x10<sup>-10</sup> m<br>
 
                 </p>
 
                 </p>
 
                 <br>
 
                 <br>
                 <p>We took several representative positions on adjoining faces of the icosahedron to calculate the interactions between the gold nanoparticles based on DLVO theory. We found the total energies are all positive (Table 1) and these total energies are also larger than the typical biological interactions (~0.5 kcal/mol or 3.49 x10<sup>21</sup> J). The results suggest that there will always be free faces on the virus particles to interact with the peptides conjugated on the test line.</p>
+
                 <p>We took several representative positions on adjoining faces of the icosahedron to calculate the interactions between the gold nanoparticles based on DLVO theory. We found the total energies are all positive (Table 1), and these total energies are also larger than the typical biological interactions (~0.5 kcal/mol or 3.49 x10<sup>21</sup> J). The results suggest that there will always be free faces on the virus particles to interact with the peptides conjugated on the test line.</p>
 
                 <br>
 
                 <br>
                 <p>Table 1. Energies of the gold nanoparticles between representative positions.</p>
+
                 <p>Table 1. The representative energies of the interaction between the gold nanoparticles.</p>
 
                 <table>
 
                 <table>
 
                     <tbody>
 
                     <tbody>

Revision as of 01:11, 21 October 2020

Model