Difference between revisions of "Team:CCU Taiwan/Model"

m
m
 
(46 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
<head>
 
<head>
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:CCU_Taiwan/JS/bootstrap&action=raw&ctype=text/javascript"</script>
+
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:CCU_Taiwan/JS/bootstrap&action=raw&ctype=text/javascript"></script>
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:CCU_Taiwan/JS/jQuery&action=raw&ctype=text/javascript"</script>
+
 
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
  
Line 25: Line 24:
 
     <ul>
 
     <ul>
 
         <li>Rosetta</li>
 
         <li>Rosetta</li>
         <li><a href="#ove">Overview</a></li>
+
         <li onclick="display1('ros')"><a href="#ove">Overview</a></li>
         <li>
+
         <li onclick="display1('ros')">
 
             <a href="#pro">Protocols</a>
 
             <a href="#pro">Protocols</a>
 
             <ul>
 
             <ul>
                 <li><a href="#cm">RosettaCM</a></li>
+
                 <li onclick="display1('ros')"><a href="#cm">RosettaCM</a></li>
                 <li><a href="#ab"><i>Ab initio</i></a></li>
+
                 <li onclick="display1('ros')"><a href="#ab"><i>Ab initio</i></a></li>
                 <li><a href="#clu">Clustering</a></li>
+
                 <li onclick="display1('ros')"><a href="#clu">Clustering</a></li>
                 <li><a href="#ppd">Protein-protein docking</a></li>
+
                 <li onclick="display1('ros')"><a href="#ppd">Protein-Protein Docking</a></li>
 
             </ul>
 
             </ul>
 
         </li>
 
         </li>
 
         <li>DLVO theory</li>
 
         <li>DLVO theory</li>
         <li><a href="#ove1">Overview</a></li>
+
         <li onclick="display1('nano')"><a href="#ove1">Overview</a></li>
         <li><a href="#rep">Repulsion between gold nanoparticles</a></li>
+
         <li onclick="display1('nano')"><a href="#rep">Repulsion between Gold Nanoparticles</a></li>
 +
        <br>
 +
        <li id="abr"><b>Abbreviations</b></li>
 +
        <li id="abr">E protein: dengue virus envelope protein</li>
 +
        <li id="abr">PTRS: peptide of tandem-repeated sequence</li>
 
     </ul>
 
     </ul>
 
     <svg class="section-nav-marker" width="200" height="200"></svg>
 
     <svg class="section-nav-marker" width="200" height="200"></svg>
Line 47: Line 50:
 
             <section id="ove">
 
             <section id="ove">
 
                 <h2>Overview</h2>
 
                 <h2>Overview</h2>
                 <p>Our goal is to design peptides to imitate CLEC5A docking with dengue virus. In order to ensure the peptides and the envelope protein (E protein) of dengue virus have an interaction, all the structure of peptides and proteins and their interactions were modeled using Rosetta. First, we utilized RosettaCM (Comparative modeling with Rosetta) to generate the structure of E protein from a local strain (PL046) based on the crystal structure (PDB: 1OAN). Second, we used the <i>ab initio</i> method to predict the peptide structures purely based on their sequences. Then, we utilized the clustering method to cluster the results and find the most probable structure of the peptide. Finally, we verified the interactions between these predicted peptides and the E protein based on the global protein-protein docking.</p>
+
                 <p>Our goal is to design the peptides of tandem-repeated sequence (PTRSs) to imitate C-type lectin domain, family 5, member A (CLEC5A) docking with dengue virus. In order to ensure the PTRs and the envelope protein (E protein) of dengue virus have an interaction, all the structure of PTRSs and proteins and their interactions were modeled using Rosetta. First, we utilized RosettaCM (Comparative modeling with Rosetta) to generate the structure of E protein from a local strain (PL046) based on the crystal structure (PDB: 1OAN). Second, we used the <i>ab initio</i> method to predict the PTRSs structures purely based on their sequences. Then, we utilized the clustering method to cluster the results and find the most probable structure of the PTRS. Finally, we verified the interactions between these predicted PTRSs and the E protein based on the global protein-protein docking. Figure 1 shows the flow of our simulation.</p>
 +
                <br>
 +
                <div id="imginfo2">
 +
                    <img id="imginfo1" src="https://static.igem.org/mediawiki/2020/8/89/T--CCU_Taiwan--Model_flow.png">
 +
                    <p>Figure 1. The flow of our simulation procedures</p>
 +
                </div>
 
             </section>
 
             </section>
 
             <br>
 
             <br>
Line 117: Line 125:
 
                             <li>PDB files generated from step 2</li>
 
                             <li>PDB files generated from step 2</li>
 
                         </ul>
 
                         </ul>
                         <p>Output: About 10,000 results.</p>
+
                         <p>Output: About 10,000 results. (The lowest Rosetta score of the structure is shown in Figure 2)</p>
 
                         <br>
 
                         <br>
 
                         <section id='slide-button3'>Commands and Flags</section>
 
                         <section id='slide-button3'>Commands and Flags</section>
Line 133: Line 141:
 
                         </div>
 
                         </div>
 
                     </ol>
 
                     </ol>
 +
                </div>
 +
                <br>
 +
                <div id="imginfo2">
 +
                    <video width="90%" height="auto" muted src="https://static.igem.org/mediawiki/2020/0/04/T--CCU_Taiwan--Model_Rosetta3.mp4" loop autoplay="autoplay"></video>
 +
                    <p>Figure 2. The homology structure of PL046 E protein in cyan based on the deposited structure (PDB: 1OAN) in magenta</p>
 
                 </div>
 
                 </div>
 
                 <br>
 
                 <br>
 
                 <div id="ab">
 
                 <div id="ab">
 
                     <h3><i>Ab initio</i></h3>
 
                     <h3><i>Ab initio</i></h3>
                     <p>Purpose: To generate the structure of the peptides</p>
+
                     <p>Purpose: To generate the structure of the PTRSs</p>
 
                     <p>Input: </p>
 
                     <p>Input: </p>
 
                     <ul>
 
                     <ul>
Line 145: Line 158:
 
                         <p>The last two inputs were generated from <a href="https://robetta.bakerlab.org/fragmentsubmit.jsp" target="_blank">Robetta</a> Fragment</p>
 
                         <p>The last two inputs were generated from <a href="https://robetta.bakerlab.org/fragmentsubmit.jsp" target="_blank">Robetta</a> Fragment</p>
 
                     </ul>
 
                     </ul>
                     <p>Output: About 20,000 results.</p>
+
                     <p>Output: About 20,000 results. (Two of the representative structures are shown in Figure 3)</p>
 
                     <br>
 
                     <br>
 
                     <section id='slide-button4'>Commands and Flags</section>
 
                     <section id='slide-button4'>Commands and Flags</section>
Line 173: Line 186:
 
                     <div class='container' id='container9' style="display: none;">
 
                     <div class='container' id='container9' style="display: none;">
 
                     <embed src="https://static.igem.org/mediawiki/2020/d/df/T--CCU_Taiwan--Model_pdf.pdf" type="application/pdf" width="100%" height="500px">
 
                     <embed src="https://static.igem.org/mediawiki/2020/d/df/T--CCU_Taiwan--Model_pdf.pdf" type="application/pdf" width="100%" height="500px">
 +
                </div>
 +
                <br>
 +
                <div id="imginfo2">
 +
                    <div id="imginfo3">
 +
                        <img width="100%" src="https://static.igem.org/mediawiki/2020/1/10/T--CCU_Taiwan--Model_Rosetta1.jpg">
 +
                    </div>
 +
                    <div id="imginfo3">
 +
                        <img width="100%" src="https://static.igem.org/mediawiki/2020/7/7d/T--CCU_Taiwan--Model_Rosetta2.jpg">
 +
                    </div>
 +
                    <p>Figure 3. Two of the representative structures of PTRS</p>
 
                 </div>
 
                 </div>
 
                 <br>
 
                 <br>
Line 222: Line 245:
 
                 <br>
 
                 <br>
 
                 <div id="ppd">
 
                 <div id="ppd">
                     <h3>Protein-protein docking (global docking)</h3>
+
                     <h3>Protein-Protein Docking (global docking)</h3>
                     <p>Purpose: To find the interaction between peptides and E Protein</p>
+
                     <p>Purpose: To find the interaction between PTRSs and E Protein</p>
                     <p>Input: The structures of ligand (peptide or CLEC5A) and receptor (E protein) in the same input file.</p>
+
                     <p>Input: The structures of ligand (PTRS or CLEC5A) and receptor (E protein) in the same input file.</p>
                     <p>Output: About 10,000 results. (Find the most frequent sites among the results.)</p>
+
                     <p>Output: About 10,000 results. (The most 100 frequent docking sites are shown in Figure 4)</p>
 
                     <br>
 
                     <br>
 
                     <section id='slide-button8'>Commands and Flags</section>
 
                     <section id='slide-button8'>Commands and Flags</section>
Line 242: Line 265:
 
                           -out:suffix _global_dock1</p>
 
                           -out:suffix _global_dock1</p>
 
                     </div>
 
                     </div>
 +
                    <br>
 +
                    <div id="imginfo2">
 +
                        <video width="90%" height="auto" muted src="https://static.igem.org/mediawiki/2020/6/62/T--CCU_Taiwan--Model_Rosetta4.mp4" loop autoplay="autoplay"></video>
 +
                        <p>Figure 4. The best 100 results (based on the Rosetta score) of PTRS-1 or PTRS-2 docking to PL046 E protein (in red). The space above the plane (in grey) indicates the external surface of the virions, where the interactions occur.</p>
 +
                    </div>
 +
                    <br>
 
                 </div>
 
                 </div>
 
             </section>
 
             </section>
 
             <br>
 
             <br>
            <hr>
 
            <section id="ref" style="word-break:break-all; word-wrap:break-all;">
 
                <h4>References</h4>
 
                <p>Combs, Steven A., Deluca, Samuel L., Deluca, Stephanie H., Lemmon, Gordon H., Nannemann, David P., Nguyen, Elizabeth D., Willis, Jordan R., Sheehan, Jonathan H. & Meiler, Jens. (2013). Small-molecule ligand docking into comparative models with Rosetta. Nature Protocols, 8(7), 1277-1298. doi: 10.1038/nprot.2013.074<br>
 
                  Raveh, Barak., London, Nir., Zimmerman, Lior. & Schueler-Furman, Ora. (2011). Rosetta FlexPepDockab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS ONE, 6(4). doi: 10.1371/journal.pone.0018934<br>
 
                  Alam, Nawsad., Goldstein, Oriel., Xia, Bing., Porter, Kathryn A., Kozakov, Dima. & Schueler-Furman, Ora. (2017). High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Computational Biology, 13(12), 1-20. doi: 10.1371/journal.pcbi.1005905<br>
 
                  Barrientos, Arturo. & Concha, Fernando. (1990). Phenomenological model of classification in conventional hydrocylones. Comminution, 819(1), 287-305. doi: 10.1007/978-1-61779-465-0<br>
 
                  Li, Haiou., Lu, Liyao., Chen, Rong., Quan, Lijun., Xia, Xiaoyan. & Lü, Qiang. (2014). PaFlexPepDock:  Parallel Ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. PLoS ONE, 9(5). doi: 10.1371/journal.pone.0094769<br>
 
                  Ciemny, Maciej., Kurcinski, Mateusz., Kamel, Karol., Kolinski, Andrzej., Alam, Nawsad., Schueler-Furman, Ora. & Kmiecik, Sebastian. (2018). Protein–peptide docking:  opportunities and challenges. Drug Discovery Today, 23(8), 1530-1537. doi: 10.1016/j.drudis.2018.05.006
 
                </p>
 
            </section>
 
 
         </section>
 
         </section>
 
         <br>
 
         <br>
Line 261: Line 279:
 
             <section id="ove1">
 
             <section id="ove1">
 
                 <h2>Overview</h2>
 
                 <h2>Overview</h2>
                 <p>The weakness of our design is that the peptides from the gold nanoparticles and the ones from the glass fiber compete for the same binding sites on the E protein. Moreover, if the E proteins on the virus particles are fully covered by the gold nanoparticles, there are no sites available to interact the peptides from the glass fiber.</p>
+
                 <p>The weakness of our design is that the PTRSs from the gold nanoparticles and the ones from the glass fiber compete for the same binding sites on the E protein. Moreover, if the E proteins on the virus particles are fully covered by the gold nanoparticles, there are no sites available to interact the PTRSs from the glass fiber.</p>
 
             </section>
 
             </section>
 
             <br>
 
             <br>
 
             <section id="rep">
 
             <section id="rep">
 
                 <h2>Repulsion between gold nanoparticles</h2>
 
                 <h2>Repulsion between gold nanoparticles</h2>
                 <p>To assess this potential problem, we used DLVO theory to calculate the repulsion between gold nanoparticles to estimate the number of gold nanoparticles that would bind to a virus particle. The structure of dengue virus is icosahedral, and there are nine E proteins on each surface. The distances between the potential binding sites can be obtained from the structure in protein data bank (1K4R).
+
                 <p>To assess this potential problem, we used DLVO theory to calculate the repulsion between gold nanoparticles to estimate the number of gold nanoparticles that would bind to a virus particle. The structure of dengue virus is icosahedral, and there are three E proteins on each surface. The distances between the potential binding sites can be obtained from the structure in protein data bank (1K4R). DLVO theory can be described as Equation 1.</p>
DLVO theory can be described as follows,</p>
+
 
                 <br>
 
                 <br>
                 <h4>W<sub>total</sub>(D) = W<sub>a</sub>(D) + W<sub>r</sub>(D) = -AR/12D + 2πεε<sub>0</sub>R&Psi;<sub>&delta;</sub><sup>2</sup>exp(-κD)</h4>
+
                 <h4>W<sub>total</sub>(D) = W<sub>a</sub>(D) + W<sub>r</sub>(D) = -AR/12D + 2πεε<sub>0</sub>R&Psi;<sub>&delta;</sub><sup>2</sup>exp(-κD) &emsp;&emsp; Equation 1. </h4>
 
                 <br>
 
                 <br>
 
                 <p>W<sub>total</sub>(D): total energy<br>
 
                 <p>W<sub>total</sub>(D): total energy<br>
Line 284: Line 301:
 
                 </p>
 
                 </p>
 
                 <br>
 
                 <br>
                 <p>We took several representative positions on adjoining faces of the icosahedron to calculate the interactions between the gold nanoparticles based on DLVO theory. We found the total energies are all positive (Table 1), and these total energies are also larger than the typical biological interactions (~0.5 kcal/mol or 3.49 x10<sup>21</sup> J). The results suggest that there will always be free faces on the virus particles to interact with the peptides conjugated on the test line.</p>
+
                 <p>We took several representative positions on adjoining faces of the icosahedron to calculate the interactions between the gold nanoparticles based on DLVO theory. We found the total energies are all positive (Table 1), and these total energies are also larger than the typical biological interactions (~0.5 kcal/mol or 3.49 x10<sup>21</sup> J). The results suggest that there will always be free faces on the virus particles to interact with the PTRS-2 conjugated on the test line.</p>
 
                 <br>
 
                 <br>
                 <p>Table 1. The representative energies of the interaction between the gold nanoparticles.</p>
+
                 <div id="imginfo2">
 +
                    <p>Table 1. The representative energies of the interaction between the gold nanoparticles.</p>
 +
                </div>
 
                 <table>
 
                 <table>
 
                     <tbody>
 
                     <tbody>
Line 362: Line 381:
 
                 </table>
 
                 </table>
 
             </section>
 
             </section>
            <br>
+
        </section>
            <hr>
+
        <br>
            <section id="ref" style="word-break:break-all; word-wrap:break-all;">
+
        <hr>
                <h4>References</h4>
+
        <section id="ref" style="word-break:break-all; word-wrap:break-all;">
                <p>Elena Pokidysheva, Ying Zhang, Anthony J. Battisti, Carol M. Bator-Kelly, Paul R. Chipman, Chuan Xiao, G. Glenn Gregorio, Wayne A. Hendrickson, Richard J. Kuhn, Michael G. Rossmann. Cryo-EM Reconstruction of Dengue Virus in Complex with the Carbohydrate Recognition Domain of DC-SIGN. Cell Press, 124(3). doi:10.1016<br>
+
            <h4>References</h4>
                  Jörg Polte. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 36. doi:10.1039<br>
+
            <p>Combs, Steven A., Deluca, Samuel L., Deluca, Stephanie H., Lemmon, Gordon H., Nannemann, David P., Nguyen, Elizabeth D., Willis, Jordan R., Sheehan, Jonathan H. & Meiler, Jens. (2013). Small-molecule ligand docking into comparative models with Rosetta. Nature Protocols, 8(7), 1277-1298. doi: 10.1038/nprot.2013.074<br>
                  Phillip E. Mason, Adrien Lerbret, Marie-Louise Saboungi, George W. Neilson, Christopher E. Dempsey, John W. Brady. Glucose Interactions with a Model Peptide. NCBI, 79(7). doi:10.1002<br>
+
              Raveh, Barak., London, Nir., Zimmerman, Lior. & Schueler-Furman, Ora. (2011). Rosetta FlexPepDockab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS ONE, 6(4). doi: 10.1371/journal.pone.0018934<br>
                  Taehoon Kim, Kangtaek Lee, Myoung-seon Gong, Sang-Woo Joo. Control of Gold Nanoparticle Aggregates by Manipulation of Interparticle Interaction. ACS Publications. doi:10.1021
+
              Alam, Nawsad., Goldstein, Oriel., Xia, Bing., Porter, Kathryn A., Kozakov, Dima. & Schueler-Furman, Ora. (2017). High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Computational Biology, 13(12), 1-20. doi: 10.1371/journal.pcbi.1005905<br>
                </p>
+
              Barrientos, Arturo. & Concha, Fernando. (1990). Phenomenological model of classification in conventional hydrocylones. Comminution, 819(1), 287-305. doi: 10.1007/978-1-61779-465-0<br>
            </section>
+
              Li, Haiou., Lu, Liyao., Chen, Rong., Quan, Lijun., Xia, Xiaoyan. & Lü, Qiang. (2014). PaFlexPepDock:  Parallel Ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. PLoS ONE, 9(5). doi: 10.1371/journal.pone.0094769<br>
 +
              Ciemny, Maciej., Kurcinski, Mateusz., Kamel, Karol., Kolinski, Andrzej., Alam, Nawsad., Schueler-Furman, Ora. & Kmiecik, Sebastian. (2018). Protein–peptide docking:  opportunities and challenges. Drug Discovery Today, 23(8), 1530-1537. doi: 10.1016/j.drudis.2018.05.006<br>
 +
              Elena Pokidysheva, Ying Zhang, Anthony J. Battisti, Carol M. Bator-Kelly, Paul R. Chipman, Chuan Xiao, G. Glenn Gregorio, Wayne A. Hendrickson, Richard J. Kuhn, Michael G. Rossmann. Cryo-EM Reconstruction of Dengue Virus in Complex with the Carbohydrate Recognition Domain of DC-SIGN. Cell Press, 124(3). doi:10.1016<br>
 +
              Jörg Polte. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 36. doi:10.1039<br>
 +
              Phillip E. Mason, Adrien Lerbret, Marie-Louise Saboungi, George W. Neilson, Christopher E. Dempsey, John W. Brady. Glucose Interactions with a Model Peptide. NCBI, 79(7). doi:10.1002<br>
 +
              Taehoon Kim, Kangtaek Lee, Myoung-seon Gong, Sang-Woo Joo. Control of Gold Nanoparticle Aggregates by Manipulation of Interparticle Interaction. ACS Publications. doi:10.1021
 +
            </p>
 
         </section>
 
         </section>
 
     </article>
 
     </article>
Line 405: Line 430:
 
     var item=document.getElementById(id);
 
     var item=document.getElementById(id);
 
     var item1=document.getElementById("text");
 
     var item1=document.getElementById("text");
     if(item.style.display=="none"){
+
     if(item.style.display=="none"){  
 +
        item1.style.display="";
 
         item.style.display="";
 
         item.style.display="";
        item1.style.display="";
 
 
     }else{   
 
     }else{   
 
         item.style.display="none";   
 
         item.style.display="none";   
 +
    }
 +
}
 +
 +
function display1(id){ 
 +
    var item=document.getElementById(id);
 +
    var item1=document.getElementById("text");
 +
    if(item.style.display=="none"){ 
 +
        item.style.display="";
 +
        item1.style.display="";
 
     }
 
     }
 
}
 
}

Latest revision as of 16:23, 12 December 2020

Model