Difference between revisions of "Team:CCU Taiwan/Model"

m
m
Line 26: Line 26:
 
         <li>Rosetta</li>
 
         <li>Rosetta</li>
 
         <li><a href="#ove">Overview</a></li>
 
         <li><a href="#ove">Overview</a></li>
        <li><a href="#flo">Flow Chart</a></li>
 
 
         <li>
 
         <li>
 
             <a href="#pro">Protocols</a>
 
             <a href="#pro">Protocols</a>
Line 49: Line 48:
 
                 <h2>Overview</h2>
 
                 <h2>Overview</h2>
 
                 <p>Our goal is to design peptides to imitate CLEC5A docking with dengue virus. In order to ensure the peptides and the envelope protein (E protein) of dengue virus have an interaction, all the structure of peptides and proteins and their interactions were modeled using Rosetta. First, we utilized RosettaCM (Comparative modeling with Rosetta) to generate the structure of E protein from a local strain (PL046) based on the crystal structure (PDB: 1OAN). Second, we used the <i>ab initio</i> method to predict the peptide structures purely based on their sequences. Then, we utilized the clustering method to cluster the results and find the most probable structure of the peptide. Finally, we verified the interactions between these predicted peptides and the E protein based on the global protein-protein docking.</p>
 
                 <p>Our goal is to design peptides to imitate CLEC5A docking with dengue virus. In order to ensure the peptides and the envelope protein (E protein) of dengue virus have an interaction, all the structure of peptides and proteins and their interactions were modeled using Rosetta. First, we utilized RosettaCM (Comparative modeling with Rosetta) to generate the structure of E protein from a local strain (PL046) based on the crystal structure (PDB: 1OAN). Second, we used the <i>ab initio</i> method to predict the peptide structures purely based on their sequences. Then, we utilized the clustering method to cluster the results and find the most probable structure of the peptide. Finally, we verified the interactions between these predicted peptides and the E protein based on the global protein-protein docking.</p>
            </section>
+
                <br>
            <br>
+
                 <div>
            <section id="flo">
+
                    <img id="imginfo1" src="https://static.igem.org/mediawiki/2020/8/89/T--CCU_Taiwan--Model_flow.png">
                 <h2>Flow chart</h2>
+
                </div>
                <img id="imginfo1" src="https://static.igem.org/mediawiki/2020/8/89/T--CCU_Taiwan--Model_flow.png">
+
 
             </section>
 
             </section>
 
             <br>
 
             <br>
Line 287: Line 285:
 
             <section id="rep">
 
             <section id="rep">
 
                 <h2>Repulsion between gold nanoparticles</h2>
 
                 <h2>Repulsion between gold nanoparticles</h2>
                 <p>To assess this potential problem, we used DLVO theory to calculate the repulsion between gold nanoparticles to estimate the number of gold nanoparticles that would bind to a virus particle. The structure of dengue virus is icosahedral, and there are nine E proteins on each surface. The distances between the potential binding sites can be obtained from the structure in protein data bank (1K4R).
+
                 <p>To assess this potential problem, we used DLVO theory to calculate the repulsion between gold nanoparticles to estimate the number of gold nanoparticles that would bind to a virus particle. The structure of dengue virus is icosahedral, and there are nine E proteins on each surface. The distances between the potential binding sites can be obtained from the structure in protein data bank (1K4R). DLVO theory can be described as Equation 1.</p>
DLVO theory can be described as follows,</p>
+
 
                 <br>
 
                 <br>
                 <h4>W<sub>total</sub>(D) = W<sub>a</sub>(D) + W<sub>r</sub>(D) = -AR/12D + 2πεε<sub>0</sub>R&Psi;<sub>&delta;</sub><sup>2</sup>exp(-κD)</h4>
+
                 <h4>W<sub>total</sub>(D) = W<sub>a</sub>(D) + W<sub>r</sub>(D) = -AR/12D + 2πεε<sub>0</sub>R&Psi;<sub>&delta;</sub><sup>2</sup>exp(-κD)&#9Equation 1.</h4>
 
                 <br>
 
                 <br>
 
                 <p>W<sub>total</sub>(D): total energy<br>
 
                 <p>W<sub>total</sub>(D): total energy<br>

Revision as of 09:59, 25 October 2020

Model