Difference between revisions of "Team:ZJU-China/Model"

 
(27 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
<style>
 
<style>
 
     /* CLEAR DEFAULT SETTINGS **************************************************/
 
     /* CLEAR DEFAULT SETTINGS **************************************************/
     #sideMenu, #top_title, .patrollink, #firstHeading, #home_logo, #sideMenu { display:none; }
+
     #sideMenu,
     #content { padding-left:0px;width:100%; margin-top:10px; padding-top:0px;padding-bottom:0px;margin-bottom:-10px;margin-right:0px; margin-left:0px;border:none;}
+
    #top_title,
     body, html {background-image: url('https://static.igem.org/mediawiki/2020/9/9e/T--ZJU-China--wiki_back2.png'); width: 100%; height: 100%;}
+
    .patrollink,
     #top {display:none;}
+
    #firstHeading,
     #top_menu_14 {display:none;}
+
    #home_logo,
     #bodyContent a[href ^="https://"], .link-https { padding-right:0px;}
+
    #sideMenu {
 +
        display: none;
 +
    }
 +
   
 +
 
 +
     #content {
 +
        padding-left: 0px;
 +
        width: 100%;
 +
        margin-top: 10px;
 +
        padding-top: 0px;
 +
        padding-bottom: 0px;
 +
        padding-right:0px;!important
 +
        margin-bottom: -10px;
 +
        margin-right: 0px;
 +
        margin-left: 0px;
 +
        border: none;
 +
        background-image: url('https://static.igem.org/mediawiki/2020/8/89/T--ZJU-China--wiki_index_backpage.png');
 +
    }
 +
 
 +
     body,
 +
    html {
 +
        background-image: url('https://static.igem.org/mediawiki/2020/8/89/T--ZJU-China--wiki_index_backpage.png');
 +
        width: 100%;
 +
        height: 100%;
 +
       
 +
    }
 +
 
 +
     #top {
 +
        display: none;
 +
     }
 +
 
 +
     #bodyContent a[href ^="https://"],
 +
    .link-https {
 +
        padding-right: 0px;
 +
    }
 +
 
 +
 
 +
 
 +
    #bodyContent a:visited {
 +
        color: black;
 +
    }
 +
 
 +
    #bodyContent p {
 +
        font-size: large;
 +
    }
 +
 
 +
    #bodyContent h1,
 +
    h2,
 +
    h3,
 +
    h4,
 +
    h5,
 +
    h6 {
 +
        font-family: 'Nunito', sans-serif;
 +
    }
 +
 
 +
    #bodyContent ul {
 +
        margin: 0 0 0 0;
 +
        list-style-image: url();
 +
    }
 +
 
 +
#preloader{
 +
       
 +
display: flex;
 +
        justify-content:center;
 +
        align-items: center;
 +
    }
 +
    #loader img{
 +
        width: auto;!important
 +
height: auto;!important
 +
max-width: 80%;
 +
max-height: 80%;
 +
    }
 +
 
 +
@media only screen and (max-width: 768px) {
 +
        .navigation ul {
 +
        display: none !important;
 +
    }
 +
 
 +
}
 +
 
 +
 
 +
#bodyContent .dropdown-list li a:hover {
 +
    background-color: rgb(199, 195, 195);
 +
}
 +
#bodyContent .dropdown-list li a:visited{
 +
    color:black;
 +
    }
 +
#bodyContent .dropdown-list li a:hover{
 +
    color:#2989d8;
 +
}
 +
 
 +
#bodyContent .navigation ul li a:hover{
 +
    color:#ffffff;
 +
}
 +
 
 +
 
 +
 
 +
#globalWrapper {
 +
padding-bottom:0;
 +
}
 +
 
 +
 
 +
#swapper{
 +
        position: relative;
 +
        height: auto;
 +
       
 +
    }
 +
#footer{
 +
        position:absolute;
 +
        bottom:0;
 +
        height:40px;
 +
    }
 +
#mcontent{
 +
       
 +
        padding-bottom: 40px;
 +
    }
 +
 
 +
.MathJax nobr>span.math>span{border-left-width:0 !important};
 +
 
  
    #bodyContent p{font-size:large;}
 
    #bodyContent h1,h2,h3,h4,h5,h6 {font-family:'Nunito', sans-serif;}
 
    #bodyContent ul {margin: 0 0 0 0;list-style-image:url();}
 
</style>
 
  
 +
</style>
  
 
<head>
 
<head>
Line 24: Line 139:
 
     <title>Model</title>
 
     <title>Model</title>
  
<link rel="stylesheet" type="text/css" href="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/CSS&action=raw&ctype=text/css" />
+
    <!--=======================================
 
+
      All Css Style link
 +
    ===========================================-->
 +
 
 +
    <!-- Custom styles for this template -->
 +
    <link rel="stylesheet" type="text/css" href="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/CSS&action=raw&ctype=text/css" />
 +
 
  
 
     <!-- <link href="assets/css/style.css" rel="stylesheet"> -->
 
     <!-- <link href="assets/css/style.css" rel="stylesheet"> -->
  
     <link rel="stylesheet" type="text/css" href="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/CSS/barcss/site&action=raw&ctype=text/css" />
+
     <link rel="stylesheet" type="text/css" href="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/CSS/barcss/site.css&action=raw&ctype=text/css" />
 
+
 
 
     <link rel="stylesheet" type="text/css" href="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/CSS/barcss/jquery&action=raw&ctype=text/css" />
 
     <link rel="stylesheet" type="text/css" href="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/CSS/barcss/jquery&action=raw&ctype=text/css" />
 
+
 
   
+
 
   
+
 
   
+
 
 
     <link rel="stylesheet" href="https://cdn.staticfile.org/font-awesome/4.7.0/css/font-awesome.css">
 
     <link rel="stylesheet" href="https://cdn.staticfile.org/font-awesome/4.7.0/css/font-awesome.css">
   
+
 
 
     <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/JS/barjs/jquery&action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/JS/barjs/jquery&action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/JS/barjs/code&action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/JS/barjs/code&action=raw&ctype=text/javascript"></script>
Line 44: Line 164:
 
     <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/JS/barjs/main&action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/JS/barjs/main&action=raw&ctype=text/javascript"></script>
  
    <script src ="https://2020.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 
  
   
+
<script src ="https://2020.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
   
+
 
 +
 
  
  
Line 55: Line 175:
 
     <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 
     <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 
     <![endif]-->
 
     <![endif]-->
<style>
+
    <style>
p{
+
        p {
    font_size:40px;
+
            font_size: 40px;
}
+
         }
 
+
</style>
+
 
+
<style>
+
         .MathJax nobr>span.math>span{border-left-width:0 !important};
+
 
     </style>
 
     </style>
  
Line 70: Line 185:
 
</head>
 
</head>
  
<body style="background-image: url('https://static.igem.org/mediawiki/2020/9/9e/T--ZJU-China--wiki_back2.png');">
+
<body style="background-image: url('https://static.igem.org/mediawiki/2020/8/89/T--ZJU-China--wiki_index_backpage.png');">
  
<!-- Pre Loader Area start -->
+
    <!-- Pre Loader Area start -->
<div id="preloader">
+
<div id="preloader" style="text-align:center;margin: 0 auto;">
    <div class="loader"></div>
+
</div>
+
<!-- Pre Loader Area End -->
+
<div class="navigation">
+
+
    <ul> 
+
        <li> 
+
            <a href="#Cloning" style="background-color: #f6b37f;" class="nav-active rounded"><span>Overview</span></a> 
+
        </li> 
+
        <li> 
+
            <a href="#about"  style="background-color: #7ecef4;" class="rounded"><span>PART Ⅰ</span></a> 
+
        </li> 
+
        <li> 
+
            <a href="#services" style="background-color: #f19ec2;" class="rounded"><span>PART Ⅱ</span></a>   
+
        </li> 
+
        <li> 
+
            <a href="#showcase" style="background-color:#eb6877;"class="rounded"><span>PART Ⅲ</span></a>   
+
        </li>
+
        <li> 
+
            <a href="#our-team" style="background-color: #cce198" class="rounded"><span>Reference</span></a>   
+
        </li>  
+
 
        
 
        
 +
        <img  style="width: auto;height: auto;max-width: 30%;max-height: 30%;" src="https://static.igem.org/mediawiki/2020/6/6b/T--ZJU-China--wiki_loading.gif">
 
          
 
          
     </ul> 
+
     </div>
</div>  
+
  
 +
    <!-- Pre Loader Area End -->
 +
 +
    <div class="navigation">
 +
 +
        <ul>
 +
            <li>
 +
                <a href="#Cloning" style="background-color: #f6b37f;" class="nav-active rounded"><span>Overview</span></a>
 +
            </li>
 +
            <li>
 +
                <a href="#about" style="background-color: #7ecef4;" class="rounded"><span>PART Ⅰ</span></a>
 +
            </li>
 +
            <li>
 +
                <a href="#services" style="background-color: #f19ec2;" class="rounded"><span>PART Ⅱ</span></a>
 +
            </li>
 +
            <li>
 +
                <a href="#showcase" style="background-color:#eb6877;" class="rounded"><span>PART Ⅲ</span></a>
 +
            </li>
 +
            <li>
 +
                <a href="#appd" style="background-color:#d197f7;" class="rounded"><span>Appendix</span></a>
 +
            </li>
 +
            <li>
 +
                <a href="#references" style="background-color: #cce198" class="rounded"><span>References</span></a>
 +
            </li>
 +
 +
 +
        </ul>
 +
    </div>
 +
 +
<!--Main Menu/ Mobile Menu Section-->
 
<section class="menu-section-area" >
 
<section class="menu-section-area" >
  
 
     <!-- Navigation -->
 
     <!-- Navigation -->
     <nav class="navbar navbar-expand-lg fixed-top d-none d-sm-none d-md-block d-lg-block d-xl-block" id="mainNav" style="background-image: url('https://static.igem.org/mediawiki/2020/b/b9/T--ZJU-China--wiki_navback2.png');" >
+
     <nav class="navbar navbar-expand-lg fixed-top d-none d-sm-none d-md-block d-lg-block d-xl-block" id="mainNav" style="background-color:white;" >
 
         <div class="container">
 
         <div class="container">
             <a class="navbar-brand" href="index.html" style="left:-10%;margin:-20px"><img src="https://static.igem.org/mediawiki/2020/7/7f/T--ZJU-China--temt.png" class="img-fluid" width="150px" ></a>
+
             <a class="navbar-brand" href="https://2020.igem.org/Team:ZJU-China" style="left:-10%;margin-top:-18px;margin-bottom:-26px;margin-left:-18px;margin-right:-18px;"><img src="https://static.igem.org/mediawiki/2020/d/dd/T--ZJU-China--wiki_logo_new.png" class="img-fluid" width="150px" ></a>
           
+
       
 
             <div class="collapse navbar-collapse" id="navbarResponsive" >
 
             <div class="collapse navbar-collapse" id="navbarResponsive" >
 
                 <ul class="navbar-nav text-capitalize ml-auto">
 
                 <ul class="navbar-nav text-capitalize ml-auto">
 
                     <li class="nav-item dropdown-box" style="background-color:pink;;opacity: 0.9;">
 
                     <li class="nav-item dropdown-box" style="background-color:pink;;opacity: 0.9;">
                         <a class="nav-link js-scroll-trigger" href="index.html">Home</a>
+
                         <a class="nav-link js-scroll-trigger" href="https://2020.igem.org/Team:ZJU-China">Home</a>
 
                        
 
                        
 
                     </li>
 
                     </li>
Line 116: Line 239:
 
                         <a class="nav-link" href="#">Team</a>
 
                         <a class="nav-link" href="#">Team</a>
 
                         <ul class="dropdown-list" >
 
                         <ul class="dropdown-list" >
                             <li><a href="team.html">Team Members</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Team">Members</a></li>
                             <li><a href="domain.html">Attributions</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Attributions">Attributions</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Medals">Medals</a></li>
 
                              
 
                              
 
                            
 
                            
Line 125: Line 249:
 
                         <a class="nav-link" href="#">Project</a>
 
                         <a class="nav-link" href="#">Project</a>
 
                         <ul class="dropdown-list">
 
                         <ul class="dropdown-list">
                             <li><a href="domain.html">Description</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Description">Description</a></li>
                             <li><a href="background.html">Background</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Background">Background</a></li>
                             <li><a href="domain.html">Design</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Design">Design</a></li>
                             <li><a href="experiment.html">Experiment</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Magnetosome">Magnetosome</a></li>
                             <li><a href="hosting.html">Result</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Experiments">Experiments</a></li>
                             <li><a href="hosting.html">Demonstrate</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Results">Results</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Future">Future</a></li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
 
                     <li class="nav-item dropdown-box" style="background-color:dodgerblue;opacity: 0.9;">
 
                     <li class="nav-item dropdown-box" style="background-color:dodgerblue;opacity: 0.9;">
                         <a class="nav-link" href="#">Modeling</a>
+
                         <a class="nav-link" href="#">Model</a>
 
                         <ul class="dropdown-list">
 
                         <ul class="dropdown-list">
                            <li><a href="services.html">Overview</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Model">Model</a></li>
                             <li><a href="services-classic.html">xxx Model</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Engineering">Engineering</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Proof_Of_Concept">Proof of Concept</a></li>
 +
                           
 
                              
 
                              
 
                         </ul>
 
                         </ul>
Line 144: Line 271:
 
                         <a class="nav-link" href="#">Parts</a>
 
                         <a class="nav-link" href="#">Parts</a>
 
                         <ul class="dropdown-list">
 
                         <ul class="dropdown-list">
                             <li><a href="about.html">Measurement</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Contribution">Contribution</a></li>
                             <li><a href="pricing-table.html">Improvement</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Improve">Improve</a></li>
                             <li><a href="login.html">New Parts</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Newparts">New Parts</a></li>
 
                              
 
                              
 
                         </ul>
 
                         </ul>
Line 153: Line 280:
 
                         <a class="nav-link" href="#">Human</a>
 
                         <a class="nav-link" href="#">Human</a>
 
                         <ul class="dropdown-list">
 
                         <ul class="dropdown-list">
                             <li><a href="safety.html">Safety</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Human_Practices">Human Practices</a></li>
                             <li><a href="blog-classic.html">Human Practice</a></li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Education">Education</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Collaborations">Collaborations</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Partnership">Partnership</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Safety">Safety</a></li>
 
                              
 
                              
                        </ul>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Implementation">Implementation</a></li>
                    </li>
+
                             <li><a href="https://2020.igem.org/Team:ZJU-China/Entrepreneurship">Entrepreneurship</a></li>
                    <li class="nav-item dropdown-box" style="background-color:orchid;opacity: 0.9;">
+
                        <a class="nav-link" href="#">Application</a>
+
                        <ul class="dropdown-list">
+
                            <li><a href="blog-grid.html">Hardware</a></li>
+
                             <li><a href="blog-classic.html">Software</a></li>
+
 
                              
 
                              
 +
 +
                       
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
 +
                   
 
                    
 
                    
 
                 </ul>
 
                 </ul>
Line 175: Line 303:
 
     <!-- Mobile Menu Start -->
 
     <!-- Mobile Menu Start -->
 
     <nav class="mobile_menu hidden d-none">
 
     <nav class="mobile_menu hidden d-none">
         <a href="index.html"><img class="mobile-logo" src="https://static.igem.org/mediawiki/2020/7/7f/T--ZJU-China--temt.png" alt="Logo"></a>
+
         <a href="https://2020.igem.org/Team:ZJU-China"><img class="mobile-logo" src="https://static.igem.org/mediawiki/2020/7/7f/T--ZJU-China--temt.png" alt="Logo"></a>
 
         <ul class="nav navbar-nav navbar-right menu">
 
         <ul class="nav navbar-nav navbar-right menu">
 
             <li class="dropdown active">
 
             <li class="dropdown active">
Line 184: Line 312:
 
                 <a>Team</a>
 
                 <a>Team</a>
 
                 <ul class="sub_menu">
 
                 <ul class="sub_menu">
                     <li><a href="team.html">Team Members</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Team">Members</a></li>
                     <li><a href="domain.html">Attributions</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Attributions">Attributions</a></li>
 +
                    <li><a href="https://2020.igem.org/Team:ZJU-China/Medals">Medals</a></li>
 +
                           
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
Line 191: Line 321:
 
                 <a>Project</a>
 
                 <a>Project</a>
 
                 <ul class="sub_menu">
 
                 <ul class="sub_menu">
                     <li><a href="domain.html">Description</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Description">Description</a></li>
                    <li><a href="background.html">Background</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Background">Background</a></li>
                    <li><a href="domain.html">Design</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Design">Design</a></li>
                    <li><a href="domain.html">Experiment</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Magnetosome">Magnetosome</a></li>
                    <li><a href="domain.html">Result</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Experiments">Experiments</a></li>
                    <li><a href="domain.html">Demonstrate</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Results">Results</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Future">Future</a></li>
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
 
             <li class="dropdown">
 
             <li class="dropdown">
                 <a>Modeling</a>
+
                 <a>Model</a>
 
                 <ul class="sub_menu">
 
                 <ul class="sub_menu">
                    <li><a href="domain.html">Overview</a></li>
+
                    <li><a href="https://2020.igem.org/Team:ZJU-China/Model">Model</a></li>
                    <li><a href="domain.html">xxx Model</a></li>
+
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Engineering">Engineering</a></li>
 +
                            <li><a href="https://2020.igem.org/Team:ZJU-China/Proof_Of_Concept">Proof of Concept</a></li>
 +
                                 
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
Line 209: Line 342:
 
                 <a>Parts</a>
 
                 <a>Parts</a>
 
                 <ul class="sub_menu">
 
                 <ul class="sub_menu">
                     <li><a href="domain.html">Measurement</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Contribution">Contribution</a></li>
                     <li><a href="domain.html">Improvement</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Improve">Improve</a></li>
                     <li><a href="domain.html">New Parts</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Newparts">New Parts</a></li>
 +
                           
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
Line 217: Line 351:
 
                 <a>Human</a>
 
                 <a>Human</a>
 
                 <ul class="sub_menu">
 
                 <ul class="sub_menu">
                     <li><a href="safety.html">Safety</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Human_Practices">Human Practices</a></li>
                     <li><a href="blog-classic.html">Human Practice</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Education">Education</a></li>
                </ul>
+
                    <li><a href="https://2020.igem.org/Team:ZJU-China/Collaborations">Collaborations</a></li>
            </li>
+
                    <li><a href="https://2020.igem.org/Team:ZJU-China/Partnership">Partnership</a></li>
            <li class="dropdown">
+
                    <li><a href="https://2020.igem.org/Team:ZJU-China/Safety">Safety</a></li>
                <a>Application</a>
+
                           
                <ul class="sub_menu">
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Implementation">Implementation</a></li>
                     <li><a href="blog-grid.html">Hardware</a></li>
+
                     <li><a href="https://2020.igem.org/Team:ZJU-China/Entrepreneurship">Entrepreneurship</a></li>
                     <li><a href="blog-classic.html">Software</a></li>
+
                           
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
 +
           
 
              
 
              
 
         </ul>
 
         </ul>
Line 235: Line 370:
 
<!--Main Menu/ Mobile Menu Section-->
 
<!--Main Menu/ Mobile Menu Section-->
  
<div class="pagename">
+
<div id="swrapper">
    <h1>Model</h1>
+
<div id="mcontent" >
</div>
+
<div id="scrollable">
+
  
      
+
     <div class="pagename">
         <div class="pagestyle" style="background-image: url('https://static.igem.org/mediawiki/2020/c/cd/T--ZJU-China--wiki_navback.jpg');top:120px;">
+
        <h1>Model</h1>
<div class="section Cloning" id="Cloning">
+
    </div>
 +
    <div id="scrollable">
 +
 
 +
 
 +
         <div class="pagestyle" style="background-image: url('https://static.igem.org/mediawiki/2020/c/cd/T--ZJU-China--wiki_navback.jpg');">
 +
            <div class="section Cloning" id="Cloning">
 
                 <div class="container1">
 
                 <div class="container1">
  
                <h2>Overview</h2>
+
                    <h2>Overview</h2>
               
+
<b>
                <p>
+
                     <p style="color: #808080;line-height: 200%"><b>To understand the production of target antibody and modified magnetosomes and the combination and disaggregation of them, we have established some <em>in-vivo</em> and <em>in-vitro</em> models. </p>
                     To understand the production of target antibody and modified magnetosomes and the combination and disaggregation of them, we have established some in vivo and in vitro models.  
+
                    <br>
                </p>
+
                    <p style="color: #808080;line-height: 200%">
                <br>
+
                        <b>Our modeling work is comprised of three parts.
                <p>
+
                    </p>
                    Our modeling work is comprised of 3 parts.
+
                </p>
+
  
                <p>
+
                    <p style="color: #808080;line-height: 200%">
                    1) We used 2 models to describe the reactions in E. coli and magnetotactic bacteria separately.
+
                        1) We used two models to describe <b>the reactions in <i>E.coli</i> and magnetotactic bacteria</b> separately.
                </p>
+
                    </p>
 +
 
 +
                    <p style="color: #808080;line-height: 200%">
 +
                        2) We used a deterministic model to determine <b>the combination and disaggregation of scFv-Fc and modified magnetosomes <i>in vitro</i>.</b>
 +
                    </p>
 +
 
 +
                    <p style="color: #808080;line-height: 200%">
 +
                        3) We used two models to describe<b> the movements of modified magnetosomes and its combination with HER2 <i>in vivo</i>.</b>
 +
                    </p>
  
                <p>
 
                    2) We used 1 deterministic model to determine the combination and disaggregation of SCFV-Fc and modified magnetosomes in vitro.
 
                </p>
 
  
                <p>
 
                    3) We used 2 models to describe the movements and the combination with HER2 of modified magnetosomes in vivo.
 
                </p>
 
               
 
               
 
           
 
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
  
           
+
 
             <div class="section about" id="about">
+
             <div class="section about" id="about">
 
                 <div class="container1">
 
                 <div class="container1">
               
 
                        <h2 style="line-height:1.5;">PART Ⅰ Deterministic model to compute the production of ScFv and modified magnetosomes</h2>
 
                        <p>
 
                            To product ScFv and modified magnetosomes, we introduced the plasmid containing the target gene into E. coli and magnetotactic bacteria respectively, and finally understood the final yield of the target product by simulating their metabolic processes respectively.
 
                        </p>
 
  
                          
+
                    <h2 style="line-height:1.5;">PART Ⅰ Deterministic Model to Compute the Production of scFv and Modified Magnetosomes</h2>
 +
                    <p>
 +
                         To produce scFv and modified magnetosomes, we introduced the plasmid containing target gene into <i>E.coli</i> and magnetotactic bacteria respectively, and finally understood
 +
                        the
 +
                        final yield of the target product by simulating their metabolic processes respectively.
 +
                    </p>
  
                        <h3>E. coli</h3>
 
                       
 
                        <p>
 
                            In E. coli, T7 RNA polymerase is placed under a lac Operon, which can be induced by IPTG. The production of the target protein, ScFV-Fc, is controlled by T7 promoter (Figure.1a). The combination between T7 RNA polymerase and T7 promoter is determined by Hill function. The ordinary differential equations (ODEs) describing these processes are shown as follows<a href="#our-team"><sup>[1]</sup></a>.
 
                        </p>
 
  
                        <p style="font-size: medium;" >
 
                            \begin{align}
 
                            \frac{d}{d t}MR_{E} &= \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{E}\\
 
                            \frac{d}{dt}R_{E}&=\beta_{R} \cdot MR_{E} -2 \cdot k_{2R} \cdot R_{E}^2 +2 \cdot k_{-2R} \cdot R_{2E} -\lambda_{R} \cdot R_{E}\\
 
                            \frac{d}{dt}R_{2E}&=  2 \cdot k_{2R} \cdot R_{E}^{2}-2 \cdot k_{-2R} \cdot R_{2E}-k_{r} \cdot R_{2 E} \cdot O_{E} +k_{-r} \cdot \left(O_{total}-O_{E}\right)-k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} \\& + k_{-dr1} \cdot I_{2}R_{2E}-\lambda_{R2} \cdot R_{2E}\\
 
                            \frac{d}{dt}O_{E}&=-k_{r} \cdot R_{2E} \cdot O_{E}+k_{-r} \cdot \left(O_{total}-O_{E}\right)+k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2}-k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2E}\\
 
                            \frac{d}{dt}I_{E}&= -2 \cdot k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2E}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} +2 \cdot k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2 E}\\& +k_{ft} \cdot YI_{exE}+k_{t} \cdot \left(I_{ex}-I_{E}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2E}\\
 
                            \frac{d}{dt}I_{2}R_{2E}&=k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} -k_{-dr1} \cdot I_{2}R_{2E} +k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} -k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2E} -\lambda_{I2R2} \cdot I_{2}R_{2E}\\
 
                            \frac{d}{dt}MY_{E}&=\alpha_{0} \cdot \left(O_{total}-O_{E}\right) +\alpha_{1} \cdot O_{E} -\lambda_{MY} \cdot MY_{E}\\
 
                            \frac{d}{dt}Y_{E}&=\beta_{Y} \cdot MY_{E}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exE} -k_{p} \cdot Y_{E} \cdot I_{exE}-\lambda_{Y} \cdot Y_{E}\\
 
                            \frac{d}{dt}YI_{exE}&=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exE}+k_{p} \cdot Y_{E} \cdot I_{exE} -\lambda_{YIex} \cdot YI_{exE}\\
 
                            \frac{d}{dt}MT7_{E}&=\alpha_{0} \cdot \left(O_{total}-O_{E}\right)+\alpha_{1} \cdot O_{E} -\lambda_{MT7} \cdot MT7_{E}\\
 
                            \frac{d}{dt}pT7_{E}&=\beta_{T7} \cdot MT7_{E}-\lambda_{pT7} \cdot pT7_{E}\\
 
                            \frac{d}{dt}MF_{E}&=\left(\frac{pT7^{n}}{pT7^{n}+K_{d}^{n}} \cdot \alpha_{MT}+\alpha_{leak}\right) \cdot O_{total}-\lambda_{MF} \cdot MF_{E}\\
 
                            \frac{d}{dt}F_{E}&=\beta_{F} \cdot MF_{E}-\lambda_{F} \cdot F_{E}
 
                            \end{align}
 
                        </p>
 
  
                        <br>
+
                    <h3><i>E.coli</i></h3>
                        <p>
+
                            According our modeling result, although there’s a peak before adding IPTG, the production cannot be maintained during a long period of time. Only after adding IPTG, the concentration of the target protein in the bacteria is maintained at 1.3069×10<sup>4</sup> nM.
+
                        </p>
+
                        <br>
+
                        <div class="imgbox">
+
                            <img src="https://static.igem.org/mediawiki/2020/a/ab/T--ZJU-China--wiki_model_fig1.png"></img>
+
                            <h6>a</h6>
+
                       
+
                        </div>
+
                        <br>
+
                        <div class="imgbox">
+
                            <img src="https://static.igem.org/mediawiki/2020/9/9c/T--ZJU-China--wiki_mode_fig2.png"></img>
+
                            <h6>b</h6>
+
                       
+
                        </div>
+
                        <br>
+
                        <div class="imgbox">
+
                            <h6>Figure 1. Induced expression of ScFv-Fc
+
                                a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (ScFv-Fc) within the system.</h6>
+
                       
+
                        </div>
+
  
                         <h3>Magnetotactic bacteria</h3>
+
                    <p>
 +
                         In <i>E.coli</i>, T7 RNA polymerase is placed under a <i>lac</i> Operon, which can be induced by IPTG. The production of the target protein, scFv-Fc, is controlled by T7
 +
                        promoter (Figure 1)<a href="#references"><sup>[1]</sup></a>. The combination between T7 RNA polymerase and T7 promoter is determined by Hill function. The ordinary differential
 +
                        equations (ODEs)
 +
                        describing these processes are shown as follows, and parameter names and chemical equations can be found in the appendix.
 +
                    </p>
  
                         <p>
+
                    <p style="font-size: medium;">
                             In magnetotactic bacteria, target protein (mamC-Zz) is placed under a lac Opera, and the repressor protein LacI is stably expressed in the cell, 2 molecules of LacI will form a dimer which binds to LacO DNA fragment and represses the expression of target protein (Figure. 2a). When IPTG is added and transported into the cell, IPTG molecules will bind with LacI and inhibit its binding to LacO. In this way, target protein can be rescued from suppression. We assume that all target proteins will be localized to the magnetosome membrane by intracellular transport. The ordinary differential equations (ODEs) describing these processes are shown as follows <a href="#our-team"><sup>[1]</sup></a>.
+
 
                         </p>
+
                         \begin{align}
                        <br>
+
                        &\frac{d}{d t}MR_{E} = \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{E}\\
                        <div class="imgbox">
+
                        &\frac{d}{dt}R_{E}=\beta_{R} \cdot MR_{E} -2 \cdot k_{2R} \cdot R_{E}^2 +2 \cdot k_{-2R} \cdot R_{2E} -\lambda_{R} \cdot R_{E}\\
                         <p style="font-size: medium;">
+
                        &\frac{d}{dt}R_{2E}= 2 \cdot k_{2R} \cdot R_{E}^{2}-2 \cdot k_{-2R} \cdot R_{2E}-k_{r} \cdot R_{2 E} \cdot O_{E} +k_{-r} \cdot \left(O_{total}-O_{E}\right)-k_{dr1} \cdot R_{2E}
                            \begin{align}
+
                        \cdot I_{E}^{2} \\&\:\:\:\:\:\:\: + k_{-dr1} \cdot I_{2}R_{2E}-\lambda_{R2} \cdot R_{2E}\\
                             \frac{d}{d t}MR_{M} &= \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{M}\\
+
                        &\frac{d}{dt}O_{E}=-k_{r} \cdot R_{2E} \cdot O_{E}+k_{-r} \cdot \left(O_{total}-O_{E}\right)+k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2}-k_{-dr2} \cdot O_{E}
                             \frac{d}{dt}R_{M}&=\beta_{R} \cdot MR_{M} -2 \cdot k_{2R} \cdot R_{M}^2 +2 \cdot k_{-2R} \cdot R_{2M} -\lambda_{R} \cdot R_{M}\\
+
                        \cdot I_{2}R_{2E}\\
                             \frac{d}{dt}R_{2M}&=2 \cdot k_{2R} \cdot R_{M}^{2}-2 \cdot k_{-2R} \cdot R_{2M}-k_{r} \cdot R_{2M} \cdot O_{M} +k_{-r} \cdot \left(O_{total}-O_{M}\right)-k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} \\&+k_{-dr1} \cdot I_{2}R_{2M}-\lambda_{R2} \cdot R_{2M}\\
+
                        &\frac{d}{dt}I_{E}= -2 \cdot k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2E}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} \\&+2
                             \frac{d}{dt}O_{M}&=-k_{r} \cdot R_{2M} \cdot O_{M}+k_{-r} \cdot \left(O_{total}-O_{M}\right)+k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2}-k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}\\
+
                        \cdot k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2 E}+k_{ft} \cdot YI_{exE}+k_{t} \cdot \left(I_{ex}-I_{E}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2E}\\
                             \frac{d}{dt}I_{M}&=-2 \cdot k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2M}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} +2 \cdot k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}\\&+k_{ft} \cdot YI_{exM}+k_{t} \cdot \left(I_{ex}-I_{M}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2M}\\
+
                        &\frac{d}{dt}I_{2}R_{2E}=k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} -k_{-dr1} \cdot I_{2}R_{2E} +k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} -k_{-dr2} \cdot O_{E}
                             \frac{d}{dt}I_{2}R_{2M}&=k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} -k_{-dr1} \cdot I_{2}R_{2M} +k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} -k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M} -\lambda_{I2R2} \cdot I_{2}R_{2M}\\
+
                        \cdot I_{2}R_{2E} \\&\:\:\:\:\:\:\:-\lambda_{I2R2} \cdot I_{2}R_{2E}\\
                             \frac{d}{dt}MY_{M}&=\alpha_{0} \cdot \left(O_{total}-O_{M}\right) +\alpha_{1} \cdot O_{M} -\lambda_{MY} \cdot MY_{M}\\
+
                        &\frac{d}{dt}MY_{E}=\alpha_{0} \cdot \left(O_{total}-O_{E}\right) +\alpha_{1} \cdot O_{E} -\lambda_{MY} \cdot MY_{E}\\
                             \frac{d}{dt}Y_{M}&=\beta_{Y} \cdot MY_{M}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exM} -k_{p} \cdot Y_{M} \cdot I_{exM}-\lambda_{Y} \cdot Y_{M}\\
+
                        &\frac{d}{dt}Y_{E}=\beta_{Y} \cdot MY_{E}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exE} -k_{p} \cdot Y_{E} \cdot I_{exE}-\lambda_{Y} \cdot Y_{E}\\
                             \frac{d}{dt}YI_{exM}&=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exM}+k_{p} \cdot Y_{M} \cdot I_{exM} -\lambda_{YIex} \cdot YI_{exM}\\
+
                        &\frac{d}{dt}YI_{exE}=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exE}+k_{p} \cdot Y_{E} \cdot I_{exE} -\lambda_{YIex} \cdot YI_{exE}\\
                             \frac{d}{dt}MZ_{M}&=\alpha_{0} \cdot \left(O_{total}-O_{M}\right)+\alpha_{1} \cdot O_{M} -\lambda_{MZ} \cdot MZ_{M}\\
+
                        &\frac{d}{dt}MT7_{E}=\alpha_{0} \cdot \left(O_{total}-O_{E}\right)+\alpha_{1} \cdot O_{E} -\lambda_{MT7} \cdot MT7_{E}\\
                             \frac{d}{dt}Z_{M}&=\beta_{Z} \cdot MZ_{M}-\lambda_{Z} \cdot Z_{M}
+
                        &\frac{d}{dt}pT7_{E}=\beta_{T7} \cdot MT7_{E}-\lambda_{pT7} \cdot pT7_{E}\\
 +
                        &\frac{d}{dt}MF_{E}=\left(\frac{pT7^{n}}{pT7^{n}+K_{d}^{n}} \cdot \alpha_{MT}+\alpha_{leak}\right) \cdot O_{total}-\lambda_{MF} \cdot MF_{E}\\
 +
                        &\frac{d}{dt}F_{E}=\beta_{F} \cdot MF_{E}-\lambda_{F} \cdot F_{E}
 +
                        \end{align}
 +
 
 +
                    </p>
 +
 
 +
                    <br>
 +
                    <p>
 +
                        According our modeling result, although there's a peak before adding IPTG, the production cannot be maintained during a long period of time. Only after adding IPTG, the
 +
                        concentration of the target protein in the bacteria is maintained at <b>1.3069×10<sup>4</sup> nM.</b>
 +
                    </p>
 +
                    <br>
 +
                    <div class="imgbox">
 +
                        <img src="https://static.igem.org/mediawiki/2020/a/ab/T--ZJU-China--wiki_model_fig1.png" style="max-width: 80%;"></img>
 +
                        <h6>Figure 1. Schematic diagram of the induced expression model of scFv-Fc.</h6>
 +
 
 +
                    </div>
 +
                    <br>
 +
                    <div class="imgbox">
 +
                        <img src="https://static.igem.org/mediawiki/2020/thumb/1/19/T--ZJU-China--Model_fig1b_arrow.jpg/800px-T--ZJU-China--Model_fig1b_arrow.jpg" style="max-width: 70%;"></img>
 +
                        <h6>Figure 2. Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis
 +
                             demonstrates the amount of protein (scFv-Fc) within
 +
                            the system.</h6>
 +
 
 +
                    </div>
 +
                    <br>
 +
 
 +
                    <h3>Magnetotactic Bacteria</h3>
 +
 
 +
                    <p>
 +
                        In magnetotactic bacteria, target protein (mamC-ZZ) is placed under a <i>lac</i> Opera, and the repressor protein LacI is stably expressed in the cell, two molecules of LacI
 +
                        will form a
 +
                        dimer which binds to <i>LacO</i> DNA fragment and represses the expression of target protein (Figure 3). When IPTG is added and transported into the cell, IPTG molecules will
 +
                        bind with
 +
                        LacI and inhibit its binding to LacO. In this way, target protein can be rescued from suppression<a href="#references"><sup>[1]</sup></a>. We assume that all target proteins
 +
                        will be localized to the magnetosome membrane by intracellular transport. The ordinary differential equations (ODEs) describing these processes are shown as follows, parameter
 +
                         names and chemical equations can be found in the appendix.
 +
                    </p>
 +
                    <br>
 +
                    <div class="imgbox">
 +
                         <p style="font-size: medium;">\begin{align}
 +
                             &\frac{d}{d t}MR_{M}= \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{M}\\
 +
                             &\frac{d}{dt}R_{M}=\beta_{R} \cdot MR_{M} -2 \cdot k_{2R} \cdot R_{M}^2 +2 \cdot k_{-2R} \cdot R_{2M} -\lambda_{R} \cdot R_{M}\\
 +
                             &\frac{d}{dt}R_{2M}=2 \cdot k_{2R} \cdot R_{M}^{2}-2 \cdot k_{-2R} \cdot R_{2M}-k_{r} \cdot R_{2M} \cdot O_{M} +k_{-r} \cdot \left(O_{total}-O_{M}\right)-k_{dr1} \cdot
 +
                            R_{2M} \cdot I_{M}^{2} \\&\:\:\:\:\:\:\:+k_{-dr1} \cdot I_{2}R_{2M}-\lambda_{R2} \cdot R_{2M}\\
 +
                             &\frac{d}{dt}O_{M}=-k_{r} \cdot R_{2M} \cdot O_{M}+k_{-r} \cdot \left(O_{total}-O_{M}\right)+k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2}-k_{-dr2} \cdot O_{M}
 +
                            \cdot I_{2}R_{2M}\\
 +
                             &\frac{d}{dt}I_{M}=-2 \cdot k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2M}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2}
 +
                            \\&+2 \cdot k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}+k_{ft} \cdot YI_{exM}+k_{t} \cdot \left(I_{ex}-I_{M}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2M}\\
 +
                             &\frac{d}{dt}I_{2}R_{2M}=k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} -k_{-dr1} \cdot I_{2}R_{2M} +k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} -k_{-dr2} \cdot O_{M}
 +
                            \cdot I_{2}R_{2M} \\&\:\:\:\:\:\:\:-\lambda_{I2R2} \cdot I_{2}R_{2M}\\
 +
                             &\frac{d}{dt}MY_{M}=\alpha_{0} \cdot \left(O_{total}-O_{M}\right) +\alpha_{1} \cdot O_{M} -\lambda_{MY} \cdot MY_{M}\\
 +
                             &\frac{d}{dt}Y_{M}=\beta_{Y} \cdot MY_{M}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exM} -k_{p} \cdot Y_{M} \cdot I_{exM}-\lambda_{Y} \cdot Y_{M}\\
 +
                             &\frac{d}{dt}YI_{exM}=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exM}+k_{p} \cdot Y_{M} \cdot I_{exM} -\lambda_{YIex} \cdot YI_{exM}\\
 +
                             &\frac{d}{dt}MZ_{M}=\alpha_{0} \cdot \left(O_{total}-O_{M}\right)+\alpha_{1} \cdot O_{M} -\lambda_{MZ} \cdot MZ_{M}\\
 +
                             &\frac{d}{dt}Z_{M}=\beta_{Z} \cdot MZ_{M}-\lambda_{Z} \cdot Z_{M}
 
                             \end{align}
 
                             \end{align}
                           
 
 
                         </p>
 
                         </p>
                        </div>
 
  
                        <br>
+
                    </div>
                           
+
                           
+
                        <p>
+
                            According to our modeling result, the final concentration of target protein mamC-Zz is 2.3625×10<sup>3</sup> nM. Since the concentration of magnetosomes extracted from the culture medium whose OD600 reaches 1 is 172ug per milliliter <a href="#our-team"><sup>[2]</sup></a>, the average concentration of magnetosomes is 46.83 per cell, and there are an average of 24.31 target protein mamC-Zz on each magnetosome when assuming that all target proteins are localized to the magnetosome membrane.
+
                        </p>
+
                        <br>
+
                        <div class="imgbox">
+
                            <img src="https://static.igem.org/mediawiki/2020/7/7b/T--ZJU-China--wiki_mode_fig3.png"></img>
+
                            <h6>a</h6>
+
                       
+
                        </div>
+
                        <br>
+
                        <div class="imgbox">
+
                            <img src="https://static.igem.org/mediawiki/2020/5/54/T--ZJU-China--wiki_mode_fig4.png"></img>
+
                            <h6>b</h6>
+
                       
+
                        </div>
+
                        <br>
+
                        <div class="imgbox">
+
                            <h6>
+
                                Figure 2. Induced expression of mamC-Zz a) Schematic diagram of the model b) Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (mamC-Zz) within the system.
+
                            </h6>
+
                       
+
                        </div>
+
  
 +
                    <br>
  
                          
+
 
           
+
                    <p>
                 </div>  
+
                         According to our modeling result, the final concentration of target protein mamC-ZZ is <b>2.3625×10<sup>3</sup> nM.</b> Since the concentration of magnetosomes extracted from
 +
                        the
 +
                        culture medium whose OD600 reaches <b>1</b> is <b>172 ug per milliliter</b><a href="#references"><sup>[2]</sup></a>, the average concentration of magnetosomes is <b>46.83 per
 +
                            cell</b>, and there are
 +
                        an average of <b>24.31</b> target protein mamC-ZZ on each magnetosome when assuming that all target proteins are localized to the magnetosome membrane.
 +
                    </p>
 +
                    <br>
 +
                    <div class="imgbox">
 +
                        <img src="https://static.igem.org/mediawiki/2020/3/36/T--ZJU-China--wiki_modelnew_fig3.png" style="max-width: 80%;"></img>
 +
                        <h6>Figure 3. Schematic diagram of the model of induced expression of mamC-ZZ.</h6>
 +
 
 +
                    </div>
 +
                    <br>
 +
                    <div class="imgbox">
 +
                        <img src="https://static.igem.org/mediawiki/2020/thumb/d/d4/T--ZJU-China--Model_fig2b_arrow.jpg/800px-T--ZJU-China--Model_fig2b_arrow.jpg" style="max-width: 70%;"></img>
 +
                        <h6>Figure 4. Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis
 +
                            demonstrates
 +
                            the amount of protein (mamC-ZZ) within the system.</h6>
 +
 
 +
                    </div>
 +
                    <br>
 +
 
 +
 
 +
 
 +
 
 +
                 </div>
 
             </div>
 
             </div>
             <div class="section services" id="services">
+
             <div class="section services" id="services">
 
                 <div class="container1">
 
                 <div class="container1">
                     <h2 style="line-height:1.5;">PART Ⅱ Deterministic model to determine the combination and disaggregation of SCFV-Fc and modified magnetosomes in vitro</h2>
+
                     <h2 style="line-height:1.5;">PART Ⅱ Deterministic Model to Determine the Combination and Disaggregation of scFv-Fc and Modified Magnetosomes <i>in Vitro</i></h2>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         After ScFv-Fc and modified magnetosomes being produced in E. coli and magnetotactic bacteria, they are extracted from cells and purified. Fc domain can combine with Zz domain so that these two parts will combine and work together. Assuming that there’s no factor causing target protein degradation in vitro, the ordinary differential equations (ODEs) describing these processes are shown as follows.
+
                         After scFv-Fc and modified magnetosomes being produced in <i>E.coli</i> and magnetotactic bacteria, they are extracted from cells and purified Fc domain can combine with
 +
                        mamC-ZZ domain
 +
                        so that these two parts will combine and work together. Assuming that there's no factor causing target protein degradation <i>in vitro</i>, the ordinary differential equations
 +
                        (ODEs)
 +
                        describing these processes are shown as follows.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
                     <p >
+
                     <p>
                     
+
 
                            $$\frac{d}{dt}F=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$
+
                        $$\frac{d}{dt}F=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$
                            $$\frac{d}{dt}Z=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$
+
                        $$\frac{d}{dt}Z=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$
                            $$\frac{d}{dt}FZ=k_{1} \cdot F \cdot Z-k_{-1} \cdot FZ$$
+
                        $$\frac{d}{dt}FZ=k_{1} \cdot F \cdot Z-k_{-1} \cdot FZ$$
                           
+
 
                         
+
 
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         From the modeling result, we can see the reaction between 10mg/ml modified magnetosomes and 100ug/ml ScFv-Fc is very fast and the production rate is relatively high (Figure. 3).
+
                         From the modeling result, we can see the reaction between 10 mg/ml modified magnetosomes and 100 ug/ml scFv-Fc is very fast and the production rate is relatively high (Figure
 +
                        5).
 
                     </p>
 
                     </p>
  
 
                     <br>
 
                     <br>
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                         <img src="https://static.igem.org/mediawiki/2020/e/e5/T--ZJU-China--wiki_mode_fig5.png"></img>
+
                         <img src="https://static.igem.org/mediawiki/2020/e/ef/T--ZJU-China--wiki_model_fig3b_new.png" style="max-width: 60%;"></img>
                         <h6>Figure. 3 combination of ScFv-Fc and modified magnetosomes ( the blue line refers to the combination product of ScFv-Fc and modified magnetosomes, and the orange line refers to pure magnetosomes)</h6>
+
                         <h6><b>Figure 5. combination of scFv-Fc and modified magnetosomes </b>(the blue line refers to the combination product of scFv-Fc and modified magnetosomes, and the orange line
                   
+
                            refers
 +
                            to pure magnetosomes).</h6>
 +
 
 
                     </div>
 
                     </div>
  
  
                   
+
 
                   
+
 
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
           
+
 
 
             <div class="section showcase" id="showcase">
 
             <div class="section showcase" id="showcase">
 
                 <div class="container1">
 
                 <div class="container1">
                     <h2 style="line-height:1.5;">PART Ⅲ Kinetic model to simulate the diffusion and binding of modified magnetosomes inside the tumor</h2>
+
                     <h2 style="line-height:1.5;">PART Ⅲ Kinetic Model to Simulate the Diffusion and Binding of Modified Magnetosomes Inside the Tumors</h2>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <br>
                     <h3>Magnetosome diffusion in internal environment</h3>
+
                     <h3>Magnetosome Diffusion in Internal Environment</h3>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         It could be assumed that the magnetosome injected collect around the tumor if exists, since our magnetosome has been proved to stick to her-2 produced by breast cancer cells specifically. As magnetosome enters into tissue fluid from blood, its concentration changes with time and the distance to the source. This way, we want to depict the alteration of magnetosome’s concentration field to explain the process intuitively by image.
+
                         It could be assumed that the magnetosome injected collect around the tumor if exists, since our magnetosome has been proved to stick to HER2 produced by breast cancer cells
 +
                        specifically. As magnetosome enters into tissue fluid from blood, its concentration changes with time and the distance to the source. This way, we want to depict the alteration
 +
                        of magnetosome's concentration field to explain the process intuitively by image.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         First of all, we’d like to focus on the factors which drive magnetosome move or diffuse in tissue fluid. Four respects were considered, involving motions with the flow of tissue fluid, eddy diffusion caused by natural convection, mass transfer due to the difference of concentration, pure molecular diffusion as magnetosome was regarded as similar to a molecular in size.
+
                         First of all, we'd like to focus on the factors which drive magnetosome move or diffuse in tissue fluid. Four respects were considered, involving motions with the flow of
 +
                        tissue fluid, eddy diffusion caused by natural convection, mass transfer due to the difference of concentration, pure molecular diffusion as magnetosome was regarded as similar
 +
                        to a molecular in size.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         To simplify the question, polar coordinates were adopted to substitute a two-dimension or three-dimension gradient. That is to say, small particles were assumed to diffuse evenly to different directions and scalars were calculated instead of vectors.
+
                         To simplify the question, polar coordinates were adopted to substitute a two-dimension or three-dimension gradient. That is to say, small particles were assumed to diffuse
 +
                        evenly to different directions and scalars were calculated instead of vectors.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
                     <p >
+
                     <p>
 
                         $$\nabla \boldsymbol{c} \rightarrow \frac{\partial c}{\partial r}$$
 
                         $$\nabla \boldsymbol{c} \rightarrow \frac{\partial c}{\partial r}$$
 
                     </p>
 
                     </p>
Line 449: Line 614:
  
 
                     <p>
 
                     <p>
                         Macroscopic methods could be useful to solve the problem. Use J to represent the diffusion flux. It is easy to infer motions with the flow of tissue fluid as $$J_{1}=u b \times \frac{\partial c}{\partial r}$$.
+
                         Macroscopic methods could be useful to solve the problem. Use J to represent the diffusion flux. It is easy to infer motions with the flow of tissue fluid as \(J_{1}=ub \times
Proximately, we can solve ub by Poiseuille flow model and its velocity formula.
+
                        \frac{\partial c}{\partial r}\\\).
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
                     <p >
+
                     <p>
 
                         $$u_{b}=\frac{\pi d^{2}\left(p+\frac{1}{2} \rho g d\right)}{32 \mu_{b} D}$$
 
                         $$u_{b}=\frac{\pi d^{2}\left(p+\frac{1}{2} \rho g d\right)}{32 \mu_{b} D}$$
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         According to Fick’s First Law, eddy diffusion caused by natural convection is calculated by $$J_{2}=D_{n} \times \frac{\partial c}{\partial r}$$. On top of that, natural convection is very weak in both capillaries and tissue fluid flows. We chose to ignore the value of J2 finally, which means $$J_{2} \approx 0 $$.
+
                         According to Fick's First Law, eddy diffusion caused by natural convection is calculated by \(J_{2}=D_{n} \times \frac{\partial c}{\partial r}\\\).
 +
 
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         In order to obtain the diffusion flux due to mass transfer, an important constant called mass transfer coefficient was in need, for the expression, $$J_{3}=k_{c} \times \frac{\partial c}{\partial r}$$.
+
                         On top of that, natural convection is very weak in both capillaries and tissue fluid flows. We chose to ignore the value of J2 finally, which means \(J_{2} \approx 0\\\).
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         We used Chaoqun Yao(2020)’s experiment kc data of 1:1 silicone oil-water mixture, to whose viscosity blood and tissue fluid similar [3]. A model was built for the relationship between the rate of flow and kc. Microsoft Office Excel was employed to finish the task.
+
                        In order to obtain the diffusion flux due to mass transfer, an important constant called mass transfer coefficient was in need, for the expression, \(J_{3}=k_{c} \times
 +
                        \frac{\partial c}{\partial r}\\\).
 +
                    </p>
 +
                    <br>
 +
                    <p>
 +
                         We used Chaoqun Yao (2020)'s experiment kc data of 1:1 silicone oil-water mixture, to whose viscosity blood and tissue fluid similar<a href="#references"><sup>[3]</sup></a>. A
 +
                        model was built for the relationship between the rate of flow and kc. Microsoft Office Excel was employed to finish the task.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                         <img src="https://static.igem.org/mediawiki/2020/7/77/T--ZJU-China--wiki_mode_fig6.png"></img>
+
                         <img src="https://static.igem.org/mediawiki/2020/7/77/T--ZJU-China--wiki_mode_fig6.png" style="max-width: 40%;"></img>
                         <h6>Figure.4 the influence of rate of flow on mass transfer coefficient</h6>
+
                         <h6><b>Figure 6. The influence of rate of flow on mass transfer coefficient.</h6>
                   
+
 
 
                     </div>
 
                     </div>
 
                     <br>
 
                     <br>
Line 513: Line 685:
 
                     <br>
 
                     <br>
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                    <p style="padding-left:20%">
+
                        <p style="padding-left:20%">
                        <i>instantaneous term = - diffusion term + convection term + sourse</i>
+
                            <i>instantaneous term = - diffusion term + convection term + sourse</i>
                    </p>
+
                        </p>
 
                     </div>
 
                     </div>
 
                     <p>
 
                     <p>
Line 524: Line 696:
 
                         $$\frac{\partial c}{\partial t}=\frac{\partial J}{\partial r}+u_{a} \nabla \boldsymbol{c}_{\boldsymbol{o}}$$
 
                         $$\frac{\partial c}{\partial t}=\frac{\partial J}{\partial r}+u_{a} \nabla \boldsymbol{c}_{\boldsymbol{o}}$$
 
                     </p>
 
                     </p>
                       
+
 
 
                     <br>
 
                     <br>
                   
+
 
 
                     <p>
 
                     <p>
 
                         To solve the following PDE with the help of MatlabR2020a, both initial condition and boundary condition were supposed to be provided.
 
                         To solve the following PDE with the help of MatlabR2020a, both initial condition and boundary condition were supposed to be provided.
Line 532: Line 704:
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         We should provide the relationship between r and c under the circumstance that t-0, when diffusion hadn’t happened in our model. At the very beginning, magnetosome collect in the capillary and it is presumed that there was seldom magnetosome in tissue fluid.
+
                         We should provide the relationship between r and c under the circumstance that t–0, when diffusion hadn't happened in our model. At the very beginning, magnetosome collect in
 +
                        the capillary and it is presumed that there was seldom magnetosome in tissue fluid.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
Line 543: Line 716:
 
                         $$
 
                         $$
 
                     </p>
 
                     </p>
                   
+
 
                   
+
 
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         In comparison to the initial condition, this time we’re required to explain how t influences c at the time of rmin=0 and rmax=10, embodying the probable size of the tumor. Soon we found the condition invalid. At last we expand rmax=100 to produce the image.
+
                         In comparison to the initial condition, this time we're required to explain how t influences c at the time of rmin=0 and rmax=10, embodying the probable size of the tumor. Soon
 +
                        we found the condition invalid. At last we expand rmax=100 to produce the image.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         One of the difficulties was that we failed to describe the alteration of the concentration taking place at the original location where diffusion started precisely and in detail. A highly rough calculation was attached to it to show the characteristics that the rate of diffusion weakened as the concentration descended and time went by.  
+
                         One of the difficulties was that we failed to describe the alteration of the concentration taking place at the original location where diffusion started precisely and in
 +
                        detail. A highly rough calculation was attached to it to show the characteristics that the rate of diffusion weakened as the concentration descended and time went by.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
Line 566: Line 741:
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
                   
+
 
 
                     <div class="imgbox">
 
                     <div class="imgbox">
                         <img src="https://static.igem.org/mediawiki/2020/8/8f/T--ZJU-China--wiki_mode_fig7.png"></img>
+
                         <img src="https://static.igem.org/mediawiki/2020/thumb/d/dd/T--ZJU-China--Model_distribution.png/721px-T--ZJU-China--Model_distribution.png" alt="" style="max-width: 40%;">
                         <h6>Figure.5 a) concentration field of magnetosome in tissue fluid b) Magnetosome diffused in the tumor issue capillaries around it.</h6>
+
                         <h6>Figure 7. Concentration field of magnetosome in tissue fluid.</h6>
                   
+
                    </div>
 +
 
 +
                    <div class="imgbox">
 +
                        <img src="https://static.igem.org/mediawiki/2020/4/48/T--ZJU-China--Model_tumorgif.gif" style="max-width: 40%;"></img>
 +
                        <h6>Figure 8. Magnetosome diffused in the tumor issue capillaries around it.</h6>
 +
 
 
                     </div>
 
                     </div>
 
                     <br>
 
                     <br>
                     <h3>Detection and combination with HER2</h3>
+
                     <h3>Detection and Combination with HER2</h3>
                   
+
 
 
                     <p>
 
                     <p>
                         To describe the combination and degradation with HER2, we have a model about modified magnetosomes in vivo. Assuming that there is no other way to clear magnetosomes and ScFv-Fc in the tissue fluid except for phagocytosis by macrophages and the phagocytosis is at a constant rate, the ordinary differential equations (ODEs) describing these processes are as follows.
+
                         To describe the combination and degradation with HER2, we have a model about modified magnetosomes <i>in vivo</i>. Assuming that there is no other way to clear magnetosomes and
 +
                        scFv-Fc in the tissue fluid except for phagocytosis by macrophages and the phagocytosis is at a constant rate, the ordinary differential equations (ODEs) describing these
 +
                        processes are as follows. Parameter names and chemical equations can be found in the appendix.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
Line 585: Line 767:
 
                         $$\frac{d}{dt}H=-k_{2} \cdot H \cdot F+k_{-2} \cdot FH -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH$$
 
                         $$\frac{d}{dt}H=-k_{2} \cdot H \cdot F+k_{-2} \cdot FH -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH$$
 
                         $$\frac{d}{dt}FH=k_{2} \cdot H \cdot F-k_{-2} \cdot FH -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH$$
 
                         $$\frac{d}{dt}FH=k_{2} \cdot H \cdot F-k_{-2} \cdot FH -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH$$
                         $$\frac{d}{dt}ZFH=k_{1} \cdot FH \cdot Z-k_{-1} \cdot ZFH+k_{2} \cdot H \cdot FZ-k_{-2} \cdot ZFH-P$$
+
                         $$\frac{d}{dt}ZFH=k_{1} \cdot FH \cdot Z-k_{-1} \cdot ZFH+k_{2} \cdot H \cdot FZ-k_{-2} \cdot ZFH$$
                       
+
 
                       
+
 
                        </p>
+
                    </p>
 
                     <br>
 
                     <br>
 
                     <p>
 
                     <p>
                         We can see in the result that the process of combination finished very quickly (Figure.6a), while the total number of the magnetosomes decreases gradually and the phagocytosis process can be finished after around 100 minutes (Figure.6b), which mains magnetosomes are cleared away after around 100 minutes. We also have results with different concentration of magnetosomes injected (Figure.6c).
+
                         We can see in the result that the process of combination finished very quickly (Figure 9A), while the total number of the magnetosomes decreases gradually because of the
 +
                        phagocytosis process (Figure 9B), and the concentration of magnetosomes is one tenth of what it was before after around 120 minutes. We also have results with different
 +
                        concentration of magnetosomes injected (Figure 9C), which shows the combination in a short of time with different injection concentration of modified magnetosomes.
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
                    <div class="imgbox">
 
                        <img src="https://static.igem.org/mediawiki/2020/d/d0/T--ZJU-China--wiki_model_fig8.png"></img>
 
                        <h6>a</h6>
 
                   
 
                    </div>
 
                    <br>
 
                    <div class="imgbox">
 
                        <img src="https://static.igem.org/mediawiki/2020/b/ba/T--ZJU-China--wiki_model_fig9.png"></img>
 
                       
 
                        <h6>b</h6>
 
                   
 
                    </div>
 
                    <div class="imgbox">
 
                       
 
                        <img src="https://static.igem.org/mediawiki/2020/1/1e/T--ZJU-China--wiki_model_fig10.png"></img>
 
                        <h6>c</h6>
 
                   
 
                    </div>
 
  
                    <div class="imgbox">
 
                        <h6>Figure.6 a) Magnetosome binding in a short time b) Metabolism of magnetosomes in the body for a long time c) The combination of different concentrations of magnetosomes in a short time after injection</h6>
 
                   
 
                    </div>
 
  
  
  
 +
                    <div class="imgbox">
 +
                        <img src="https://static.igem.org/mediawiki/2020/9/95/T--ZJU-China--Modelfig6.png" alt="">
 +
                        <h6>Figure 9. (A) Magnetosome binding in a short time. (B) Metabolism of magnetosomes in the body for a long time. (C) The combination of different concentrations of magnetosomes in a short time after injection.</h6>
 +
                    </div>
 +
  <br>
 +
                    <br>
  
  
 +
                </div>
 +
            </div>
  
                      
+
            <div class="section appd" id="appd">
                      
+
                <div class="container1">
                 
+
                     <h2>Appendix</h2>
                     <br>
+
                     <p>
 +
                        Please consult the following file for a clearer understanding of the formulation of the model.
 +
                     </p>
 
                     <br>
 
                     <br>
 +
                    <div class="imgbox">
 +
                        <embed src="https://static.igem.org/mediawiki/2020/6/67/T--ZJU-China--wiki_model_app.pdf" width="750" height="600">
 +
                    </div>
  
                   
+
                 </div>
                 </div>    
+
 
             </div>
 
             </div>
             <div class="section our-team" id="our-team">
+
 
 +
             <div class="section our-team" id="references">
 
                 <div class="container1">
 
                 <div class="container1">
                     <h2>Reference</h2>
+
                     <h2>References</h2>
 
                     <p>
 
                     <p>
                         [1] Stamatakis, M., & Mantzaris, N. V. (2009). Comparison of deterministic and stochastic models of the lac operon genetic network. Biophysical journal, 96(3), 887–906. https://doi.org/10.1016/j.bpj.2008.10.028
+
                         [1]. Stamatakis, M., & Mantzaris, N. V. (2009). Comparison of deterministic and stochastic models of the lac operon genetic network. <i>Biophysical journal, 96</i>(3), 887–906.
 +
                        https://doi.org/10.1016/j.bpj.2008.10.028
 
                     </p>
 
                     </p>
                    <br>
 
 
                     <p>
 
                     <p>
                         [2] Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G., & Ying, L. (2007). Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Letters in applied microbiology, 45(1), 75–81. https://doi.org/10.1111/j.1472-765X.2007.02143.x
+
                         [2]. Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G., & Ying, L. (2007). Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to
 +
                        mouse fibroblasts in vitro. <i>Letters in applied microbiology, 45</i>(1), 75–81. https://doi.org/10.1111/j.1472-765X.2007.02143.x
 
                     </p>
 
                     </p>
                    <br>
 
 
                     <p>
 
                     <p>
                         [3] Yao, C., Ma, H., Zhao, Q., Liu, Y., Zhao, Y., & Chen, G. (2020). Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass transfer regime and the effect of fluid viscosity. Chemical Engineering Science, 223, 115734. https://doi.org/10.1016/j.ces.2020.115734
+
                         [3]. Yao, C., Ma, H., Zhao, Q., Liu, Y., Zhao, Y., & Chen, G. (2020). Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass
 +
                        transfer regime and the effect of fluid viscosity. <i>Chemical Engineering Science</i>, 223, 115734. https://doi.org/10.1016/j.ces.2020.115734
 
                     </p>
 
                     </p>
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <br>
                 </div>  
+
                    <br>
 +
                    <br>
 +
                    <br>
 +
                 </div>
 
             </div>
 
             </div>
           
+
 
           
+
 
                                   
+
 
         </div>  
+
         </div>
 +
    </div>
 
</div>
 
</div>
  
<div class="top-arrow">
+
<div class="footer" style="background-image: url('https://static.igem.org/mediawiki/2020/7/7f/T--ZJU-China--wiki_index_foot.png');background-size:100% 100%;">
     <a href="#" id="scroll" style="display:block ;"><i class="fa fa-angle-up" style="font-size:36px;color:pink"></i></a>
+
     <div style="display:inline-block;height:180px;margin-left:25%;padding-top:130px;text-align:left;">
 +
        <a href="http://www.zju.edu.cn/" target="_blank" style="color:red;opacity:0;font-size:15px;z-index: 99999;width:20%">aannnaaaaannnnnnnnnnnnn</a>
 +
       
 +
    </div>
 +
    <div style="display:inline-block;height:180px;margin-left:15%;margin-right:10%;padding-top:130px;text-align:center;">
 +
        <a href="mailto:liangqiyu22@zju.edu.cn" target="_blank" style="color:red;opacity:0;font-size:15px;z-index: 99999;width:20%">aannnnnnnnn</a>
 +
       
 +
    </div>
 +
   
 +
   
 +
     
 
</div>
 
</div>
  
 +
</div>
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsjquerymin&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jspropermin&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsboot&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsowl&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jseasing&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jstype&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsq1&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jswow&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsaos&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsway&action=raw&ctype=text/javascript"></script>
 
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jscounter&action=raw&ctype=text/javascript"></script>
 
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsven&action=raw&ctype=text/javascript"></script>
 
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jssel&action=raw&ctype=text/javascript"></script>
+
    <div class="top-arrow">
 +
        <a href="#" id="scroll" style="display:block ;"><img src="https://static.igem.org/mediawiki/2020/e/ea/T--ZJU-China--wiki_gifff.gif" style="position: absolute;bottom:10%;right:0%;width:140%;"></img></a>
 +
    </div>
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsmenu&action=raw&ctype=text/javascript"></script>
 
  
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jscustom1&action=raw&ctype=text/javascript"></script>
+
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsjquerymin&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jspropermin&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsboot&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsowl&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jseasing&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jstype&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsq1&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jswow&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsaos&action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsway&action=raw&ctype=text/javascript"></script>
  
<script>
+
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jscounter&action=raw&ctype=text/javascript"></script>
  
$document.ready(function(){
+
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsven&action=raw&ctype=text/javascript"></script>
$("#HQ_page").attr('id',");
+
 
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jssel&action=raw&ctype=text/javascript"></script>
 +
 
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jsmenu&action=raw&ctype=text/javascript"></script>
 +
 
 +
    <script type="text/javascript" src="https://2020.igem.org/wiki/index.php?title=Template:ZJU-China/jscustom1&action=raw&ctype=text/javascript"></script>
 +
 
 +
    <script>
 +
 
 +
        $document.ready(function () {
 +
            $("#HQ_page").attr('id', ");
 
});
 
});
  
</script>
+
    </script>
  
  
<script>
+
    <script>
    var typed = new Typed('#typed', {
+
        var typed = new Typed('#typed', {
        stringsElement: '#typed-strings',
+
            stringsElement: '#typed-strings',
        typeSpeed: 100,
+
            typeSpeed: 100,
        backSpeed: 100,
+
            backSpeed: 100,
        loop: true,
+
            loop: true,
        smartBackspace: true,
+
            smartBackspace: true,
    });
+
        });
</script>
+
    </script>
  
<script>
+
    <script>
    function topMao(target){
+
        function topMao(target) {
    $('html, body').animate({scrollTop: $(target).offset().top - 170}, 500);//130为锚点到距顶部的距离,500为执行时间
+
            $('html, body').animate({ scrollTop: $(target).offset().top - 170 }, 500);//130为锚点到距顶部的距离,500为执行时间
    return true;
+
            return true;
}
+
        }
</script>
+
     </script>
+
<script>
+
     var topBegin=$("#accordion").offset().top;  //获取导航栏(class='positionMiddleNav')离视口的高度
+
    $(window).scroll(function(){  //scroll事件
+
      var win_top=$(this).scrollTop(); //获取滚动条位置
+
      var _top=$("#accordion").offset().top; //获取当前导航栏距视口高度
+
       console.log(win_top , 'aa');
+
              console.log(_top , 'cc');
+
      if(win_top>=_top-150){
+
           
+
       $("#accordion").css({position: "fixed",top:"10em"}); 
+
      }
+
      if(win_top<topBegin){ //因为导航栏距视口高度在定位发生后是变化的 ,
+
      //所以当导航栏回到原位置时保持先前状态需要将滚动条位置与最先前的导航栏位置进行对比
+
       $("#accordion").css({position: "absolute"}); 
+
      }
+
    })
+
</script>
+
  
<script>
+
    <script>
 +
        var topBegin = $("#accordion").offset().top;  //获取导航栏(class='positionMiddleNav')离视口的高度
 +
        $(window).scroll(function () {  //scroll事件
 +
            var win_top = $(this).scrollTop(); //获取滚动条位置
 +
            var _top = $("#accordion").offset().top; //获取当前导航栏距视口高度
 +
            console.log(win_top, 'aa');
 +
            console.log(_top, 'cc');
 +
            if (win_top >= _top - 150) {
  
     function displaywindowsize(){
+
                $("#accordion").css({ position: "fixed", top: "10em" });
        var w = document.documentElement.clientWidth;
+
            }
        var h = document.documentElement.clientHeight;
+
            if (win_top < topBegin) { //因为导航栏距视口高度在定位发生后是变化的 ,
        if(w<1100&&w>800){
+
                //所以当导航栏回到原位置时保持先前状态需要将滚动条位置与最先前的导航栏位置进行对比
         
+
                $("#accordion").css({ position: "absolute" });
            $("#accordion").css({left:"2%"});
+
            }
             $("#accordion").css({display:"block"});
+
        })
 +
     </script>
 +
 
 +
    <script>
 +
 
 +
        function displaywindowsize() {
 +
            var w = document.documentElement.clientWidth;
 +
            var h = document.documentElement.clientHeight;
 +
            if (w < 1100 && w > 800) {
 +
 
 +
                $("#accordion").css({ left: "2%" });
 +
                $("#accordion").css({ display: "block" });
 +
             }
 +
            else if (w < 800) {
 +
                $("#accordion").css({ display: "none" });
 +
            }
 +
            else {
 +
                $("#accordion").css({ left: "10%" });
 +
                $("#accordion").css({ display: "block" });
 +
            }
 
         }
 
         }
        else if(w<800){
 
            $("#accordion").css({display:"none"});
 
        }
 
        else{
 
            $("#accordion").css({left:"10%"});
 
            $("#accordion").css({display:"block"});
 
        }
 
    }
 
  
    window.addEventListener("resize",displaywindowsize);
+
        window.addEventListener("resize", displaywindowsize);
    displaywindowsize();
+
        displaywindowsize();
</script>
+
    </script>
  
  

Latest revision as of 02:55, 28 October 2020

Model

Model

Overview

To understand the production of target antibody and modified magnetosomes and the combination and disaggregation of them, we have established some in-vivo and in-vitro models.


Our modeling work is comprised of three parts.

1) We used two models to describe the reactions in E.coli and magnetotactic bacteria separately.

2) We used a deterministic model to determine the combination and disaggregation of scFv-Fc and modified magnetosomes in vitro.

3) We used two models to describe the movements of modified magnetosomes and its combination with HER2 in vivo.

PART Ⅰ Deterministic Model to Compute the Production of scFv and Modified Magnetosomes

To produce scFv and modified magnetosomes, we introduced the plasmid containing target gene into E.coli and magnetotactic bacteria respectively, and finally understood the final yield of the target product by simulating their metabolic processes respectively.

E.coli

In E.coli, T7 RNA polymerase is placed under a lac Operon, which can be induced by IPTG. The production of the target protein, scFv-Fc, is controlled by T7 promoter (Figure 1)[1]. The combination between T7 RNA polymerase and T7 promoter is determined by Hill function. The ordinary differential equations (ODEs) describing these processes are shown as follows, and parameter names and chemical equations can be found in the appendix.

\begin{align} &\frac{d}{d t}MR_{E} = \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{E}\\ &\frac{d}{dt}R_{E}=\beta_{R} \cdot MR_{E} -2 \cdot k_{2R} \cdot R_{E}^2 +2 \cdot k_{-2R} \cdot R_{2E} -\lambda_{R} \cdot R_{E}\\ &\frac{d}{dt}R_{2E}= 2 \cdot k_{2R} \cdot R_{E}^{2}-2 \cdot k_{-2R} \cdot R_{2E}-k_{r} \cdot R_{2 E} \cdot O_{E} +k_{-r} \cdot \left(O_{total}-O_{E}\right)-k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} \\&\:\:\:\:\:\:\: + k_{-dr1} \cdot I_{2}R_{2E}-\lambda_{R2} \cdot R_{2E}\\ &\frac{d}{dt}O_{E}=-k_{r} \cdot R_{2E} \cdot O_{E}+k_{-r} \cdot \left(O_{total}-O_{E}\right)+k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2}-k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2E}\\ &\frac{d}{dt}I_{E}= -2 \cdot k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2E}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} \\&+2 \cdot k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2 E}+k_{ft} \cdot YI_{exE}+k_{t} \cdot \left(I_{ex}-I_{E}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2E}\\ &\frac{d}{dt}I_{2}R_{2E}=k_{dr1} \cdot R_{2E} \cdot I_{E}^{2} -k_{-dr1} \cdot I_{2}R_{2E} +k_{dr2} \cdot \left(O_{total}-O_{E}\right) \cdot I_{E}^{2} -k_{-dr2} \cdot O_{E} \cdot I_{2}R_{2E} \\&\:\:\:\:\:\:\:-\lambda_{I2R2} \cdot I_{2}R_{2E}\\ &\frac{d}{dt}MY_{E}=\alpha_{0} \cdot \left(O_{total}-O_{E}\right) +\alpha_{1} \cdot O_{E} -\lambda_{MY} \cdot MY_{E}\\ &\frac{d}{dt}Y_{E}=\beta_{Y} \cdot MY_{E}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exE} -k_{p} \cdot Y_{E} \cdot I_{exE}-\lambda_{Y} \cdot Y_{E}\\ &\frac{d}{dt}YI_{exE}=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exE}+k_{p} \cdot Y_{E} \cdot I_{exE} -\lambda_{YIex} \cdot YI_{exE}\\ &\frac{d}{dt}MT7_{E}=\alpha_{0} \cdot \left(O_{total}-O_{E}\right)+\alpha_{1} \cdot O_{E} -\lambda_{MT7} \cdot MT7_{E}\\ &\frac{d}{dt}pT7_{E}=\beta_{T7} \cdot MT7_{E}-\lambda_{pT7} \cdot pT7_{E}\\ &\frac{d}{dt}MF_{E}=\left(\frac{pT7^{n}}{pT7^{n}+K_{d}^{n}} \cdot \alpha_{MT}+\alpha_{leak}\right) \cdot O_{total}-\lambda_{MF} \cdot MF_{E}\\ &\frac{d}{dt}F_{E}=\beta_{F} \cdot MF_{E}-\lambda_{F} \cdot F_{E} \end{align}


According our modeling result, although there's a peak before adding IPTG, the production cannot be maintained during a long period of time. Only after adding IPTG, the concentration of the target protein in the bacteria is maintained at 1.3069×104 nM.


Figure 1. Schematic diagram of the induced expression model of scFv-Fc.

Figure 2. Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (scFv-Fc) within the system.

Magnetotactic Bacteria

In magnetotactic bacteria, target protein (mamC-ZZ) is placed under a lac Opera, and the repressor protein LacI is stably expressed in the cell, two molecules of LacI will form a dimer which binds to LacO DNA fragment and represses the expression of target protein (Figure 3). When IPTG is added and transported into the cell, IPTG molecules will bind with LacI and inhibit its binding to LacO. In this way, target protein can be rescued from suppression[1]. We assume that all target proteins will be localized to the magnetosome membrane by intracellular transport. The ordinary differential equations (ODEs) describing these processes are shown as follows, parameter names and chemical equations can be found in the appendix.


\begin{align} &\frac{d}{d t}MR_{M}= \alpha_MR \cdot O_{total} - \lambda_{MR} \cdot MR_{M}\\ &\frac{d}{dt}R_{M}=\beta_{R} \cdot MR_{M} -2 \cdot k_{2R} \cdot R_{M}^2 +2 \cdot k_{-2R} \cdot R_{2M} -\lambda_{R} \cdot R_{M}\\ &\frac{d}{dt}R_{2M}=2 \cdot k_{2R} \cdot R_{M}^{2}-2 \cdot k_{-2R} \cdot R_{2M}-k_{r} \cdot R_{2M} \cdot O_{M} +k_{-r} \cdot \left(O_{total}-O_{M}\right)-k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} \\&\:\:\:\:\:\:\:+k_{-dr1} \cdot I_{2}R_{2M}-\lambda_{R2} \cdot R_{2M}\\ &\frac{d}{dt}O_{M}=-k_{r} \cdot R_{2M} \cdot O_{M}+k_{-r} \cdot \left(O_{total}-O_{M}\right)+k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2}-k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}\\ &\frac{d}{dt}I_{M}=-2 \cdot k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} +2 \cdot k_{-dr1} \cdot I_{2}R_{2M}-2 \cdot k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} \\&+2 \cdot k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M}+k_{ft} \cdot YI_{exM}+k_{t} \cdot \left(I_{ex}-I_{M}\right)+2 \cdot \lambda_{I2R2} \cdot I_{2}R_{2M}\\ &\frac{d}{dt}I_{2}R_{2M}=k_{dr1} \cdot R_{2M} \cdot I_{M}^{2} -k_{-dr1} \cdot I_{2}R_{2M} +k_{dr2} \cdot \left(O_{total}-O_{M}\right) \cdot I_{M}^{2} -k_{-dr2} \cdot O_{M} \cdot I_{2}R_{2M} \\&\:\:\:\:\:\:\:-\lambda_{I2R2} \cdot I_{2}R_{2M}\\ &\frac{d}{dt}MY_{M}=\alpha_{0} \cdot \left(O_{total}-O_{M}\right) +\alpha_{1} \cdot O_{M} -\lambda_{MY} \cdot MY_{M}\\ &\frac{d}{dt}Y_{M}=\beta_{Y} \cdot MY_{M}+\left(k_{ft}+k_{-p}\right) \cdot YI_{exM} -k_{p} \cdot Y_{M} \cdot I_{exM}-\lambda_{Y} \cdot Y_{M}\\ &\frac{d}{dt}YI_{exM}=-\left(k_{ft}+k_{-p}\right) \cdot YI_{exM}+k_{p} \cdot Y_{M} \cdot I_{exM} -\lambda_{YIex} \cdot YI_{exM}\\ &\frac{d}{dt}MZ_{M}=\alpha_{0} \cdot \left(O_{total}-O_{M}\right)+\alpha_{1} \cdot O_{M} -\lambda_{MZ} \cdot MZ_{M}\\ &\frac{d}{dt}Z_{M}=\beta_{Z} \cdot MZ_{M}-\lambda_{Z} \cdot Z_{M} \end{align}


According to our modeling result, the final concentration of target protein mamC-ZZ is 2.3625×103 nM. Since the concentration of magnetosomes extracted from the culture medium whose OD600 reaches 1 is 172 ug per milliliter[2], the average concentration of magnetosomes is 46.83 per cell, and there are an average of 24.31 target protein mamC-ZZ on each magnetosome when assuming that all target proteins are localized to the magnetosome membrane.


Figure 3. Schematic diagram of the model of induced expression of mamC-ZZ.

Figure 4. Dynamics of target protein. Horizontal axis shows the length of time. Vertical axis demonstrates the amount of protein (mamC-ZZ) within the system.

PART Ⅱ Deterministic Model to Determine the Combination and Disaggregation of scFv-Fc and Modified Magnetosomes in Vitro



After scFv-Fc and modified magnetosomes being produced in E.coli and magnetotactic bacteria, they are extracted from cells and purified Fc domain can combine with mamC-ZZ domain so that these two parts will combine and work together. Assuming that there's no factor causing target protein degradation in vitro, the ordinary differential equations (ODEs) describing these processes are shown as follows.


$$\frac{d}{dt}F=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$ $$\frac{d}{dt}Z=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ$$ $$\frac{d}{dt}FZ=k_{1} \cdot F \cdot Z-k_{-1} \cdot FZ$$


From the modeling result, we can see the reaction between 10 mg/ml modified magnetosomes and 100 ug/ml scFv-Fc is very fast and the production rate is relatively high (Figure 5).


Figure 5. combination of scFv-Fc and modified magnetosomes (the blue line refers to the combination product of scFv-Fc and modified magnetosomes, and the orange line refers to pure magnetosomes).

PART Ⅲ Kinetic Model to Simulate the Diffusion and Binding of Modified Magnetosomes Inside the Tumors



Magnetosome Diffusion in Internal Environment



It could be assumed that the magnetosome injected collect around the tumor if exists, since our magnetosome has been proved to stick to HER2 produced by breast cancer cells specifically. As magnetosome enters into tissue fluid from blood, its concentration changes with time and the distance to the source. This way, we want to depict the alteration of magnetosome's concentration field to explain the process intuitively by image.


First of all, we'd like to focus on the factors which drive magnetosome move or diffuse in tissue fluid. Four respects were considered, involving motions with the flow of tissue fluid, eddy diffusion caused by natural convection, mass transfer due to the difference of concentration, pure molecular diffusion as magnetosome was regarded as similar to a molecular in size.


To simplify the question, polar coordinates were adopted to substitute a two-dimension or three-dimension gradient. That is to say, small particles were assumed to diffuse evenly to different directions and scalars were calculated instead of vectors.


$$\nabla \boldsymbol{c} \rightarrow \frac{\partial c}{\partial r}$$


Macroscopic methods could be useful to solve the problem. Use J to represent the diffusion flux. It is easy to infer motions with the flow of tissue fluid as \(J_{1}=ub \times \frac{\partial c}{\partial r}\\\).


$$u_{b}=\frac{\pi d^{2}\left(p+\frac{1}{2} \rho g d\right)}{32 \mu_{b} D}$$


According to Fick's First Law, eddy diffusion caused by natural convection is calculated by \(J_{2}=D_{n} \times \frac{\partial c}{\partial r}\\\).


On top of that, natural convection is very weak in both capillaries and tissue fluid flows. We chose to ignore the value of J2 finally, which means \(J_{2} \approx 0\\\).


In order to obtain the diffusion flux due to mass transfer, an important constant called mass transfer coefficient was in need, for the expression, \(J_{3}=k_{c} \times \frac{\partial c}{\partial r}\\\).


We used Chaoqun Yao (2020)'s experiment kc data of 1:1 silicone oil-water mixture, to whose viscosity blood and tissue fluid similar[3]. A model was built for the relationship between the rate of flow and kc. Microsoft Office Excel was employed to finish the task.


Figure 6. The influence of rate of flow on mass transfer coefficient.

Now we could get the value of Q in our situation. This way, the value of kc could be assumed roughly.


$$Q=u_{a} \times \frac{1}{4} \pi d^{2}=4.01 \times 10^{-4} ml/min$$ $$k_{c}=-0.0622 Q^{3}+0.0127 Q^{2}-0.0005 Q+2 \times 10^{-5}=2.00 \times 10^{-2} mm/s$$


Dispersion effect also led to the diffusion of magnetosome in tumor tissue. It could be estimated the same way as eddy diffusion caused by natural convection:


$$J_{4}=D_{m} \times \frac{\partial c}{\partial r}$$


Stokes-Einstein equation was able to be used to calculate the diffusion coefficient as below.


$$D_{m}=\frac{k_{b} T}{6 \pi \mu_{b} R}$$


Overall diffusion flux could be calculated by superimposing the following diffusion flux.


$$J=J_{1}-J_{2}-J_{3}-J_{4}$$


It is assumed that the motion of fluid flow obeys the law discovered by Navier and Stokes.


instantaneous term = - diffusion term + convection term + sourse

That is to say,


$$\frac{\partial c}{\partial t}=\frac{\partial J}{\partial r}+u_{a} \nabla \boldsymbol{c}_{\boldsymbol{o}}$$


To solve the following PDE with the help of MatlabR2020a, both initial condition and boundary condition were supposed to be provided.


We should provide the relationship between r and c under the circumstance that t–0, when diffusion hadn't happened in our model. At the very beginning, magnetosome collect in the capillary and it is presumed that there was seldom magnetosome in tissue fluid.


$$ \left.c(t, r)\right|_{t=0}=\left\{\begin{array}{ll} 0 & r \neq 0 \\ c_{o} & r=0 \end{array}\right. $$


In comparison to the initial condition, this time we're required to explain how t influences c at the time of rmin=0 and rmax=10, embodying the probable size of the tumor. Soon we found the condition invalid. At last we expand rmax=100 to produce the image.


One of the difficulties was that we failed to describe the alteration of the concentration taking place at the original location where diffusion started precisely and in detail. A highly rough calculation was attached to it to show the characteristics that the rate of diffusion weakened as the concentration descended and time went by.


$$\left.c(t, r)\right|_{r=0}=\frac{c_{o}}{1+0.05 \sqrt{t}}$$


Simultaneously, we assumed that when diffusion flux caught the brim space, co would be small enough to be ignored.


$$\left.c(t, r)\right|_{r=100}=0$$


Figure 7. Concentration field of magnetosome in tissue fluid.
Figure 8. Magnetosome diffused in the tumor issue capillaries around it.

Detection and Combination with HER2

To describe the combination and degradation with HER2, we have a model about modified magnetosomes in vivo. Assuming that there is no other way to clear magnetosomes and scFv-Fc in the tissue fluid except for phagocytosis by macrophages and the phagocytosis is at a constant rate, the ordinary differential equations (ODEs) describing these processes are as follows. Parameter names and chemical equations can be found in the appendix.


$$\frac{d}{dt}F=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ -k_{2} \cdot H \cdot F +k_{-2} \cdot FH$$ $$\frac{d}{dt}Z=-k_{1} \cdot F \cdot Z+k_{-1} \cdot FZ -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH-P$$ $$\frac{d}{dt}FZ=k_{1} \cdot F \cdot Z-k_{-1} \cdot FZ -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH-P$$ $$\frac{d}{dt}H=-k_{2} \cdot H \cdot F+k_{-2} \cdot FH -k_{2} \cdot H \cdot FZ+k_{-2} \cdot ZFH$$ $$\frac{d}{dt}FH=k_{2} \cdot H \cdot F-k_{-2} \cdot FH -k_{1} \cdot FH \cdot Z+k_{-1} \cdot ZFH$$ $$\frac{d}{dt}ZFH=k_{1} \cdot FH \cdot Z-k_{-1} \cdot ZFH+k_{2} \cdot H \cdot FZ-k_{-2} \cdot ZFH$$


We can see in the result that the process of combination finished very quickly (Figure 9A), while the total number of the magnetosomes decreases gradually because of the phagocytosis process (Figure 9B), and the concentration of magnetosomes is one tenth of what it was before after around 120 minutes. We also have results with different concentration of magnetosomes injected (Figure 9C), which shows the combination in a short of time with different injection concentration of modified magnetosomes.


Figure 9. (A) Magnetosome binding in a short time. (B) Metabolism of magnetosomes in the body for a long time. (C) The combination of different concentrations of magnetosomes in a short time after injection.


Appendix

Please consult the following file for a clearer understanding of the formulation of the model.


References

[1]. Stamatakis, M., & Mantzaris, N. V. (2009). Comparison of deterministic and stochastic models of the lac operon genetic network. Biophysical journal, 96(3), 887–906. https://doi.org/10.1016/j.bpj.2008.10.028

[2]. Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G., & Ying, L. (2007). Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Letters in applied microbiology, 45(1), 75–81. https://doi.org/10.1111/j.1472-765X.2007.02143.x

[3]. Yao, C., Ma, H., Zhao, Q., Liu, Y., Zhao, Y., & Chen, G. (2020). Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass transfer regime and the effect of fluid viscosity. Chemical Engineering Science, 223, 115734. https://doi.org/10.1016/j.ces.2020.115734