Difference between revisions of "Team:Calgary/Results"

Line 155: Line 155:
 
           <a href="#parts">Parts</a>
 
           <a href="#parts">Parts</a>
 
<br>
 
<br>
           <a href="#modelling">Modelling</a>
+
           <a href="#modelling">Modelling, Software, and Measurement</a>
 
<br>
 
<br>
 
           <a href="#future-directions">Next Year</a>
 
           <a href="#future-directions">Next Year</a>
Line 339: Line 339:
 
<hr>
 
<hr>
 
<div class = "modelling" id="modelling">
 
<div class = "modelling" id="modelling">
         <h2>MODELLING</h2>  
+
         <h2>MODELLING, SOFTWARE, AND MEASUREMENT</h2>  
 
         <h4>Bellatrix</h4>
 
         <h4>Bellatrix</h4>
 
<a href="Bellatrix"><p style="font-size: 80%; font-weight: bold; color:#0197AE;">Go to Bellatrix page </p></a>
 
<a href="Bellatrix"><p style="font-size: 80%; font-weight: bold; color:#0197AE;">Go to Bellatrix page </p></a>
Line 369: Line 369:
 
<a href="GausHaus"><p style="font-size: 80%; font-weight: bold; color:#0197AE;">Go to GausHaus page </p></a>
 
<a href="GausHaus"><p style="font-size: 80%; font-weight: bold; color:#0197AE;">Go to GausHaus page </p></a>
 
         <p>
 
         <p>
          In order to provide a sustainable, community-based solution, we plan
+
GausHaus was not like the other software sitting by the beach enjoying sparkling cider; it put in the work.  GausHaus spent the summer confusing and terrorizing our statistician with sprinkles of success amongst an ocean of setbacks. Once it clicked though, we were off to the races with GausHaus coming through whenever called upon. This resulted in it being instrumental to our protein modelling, allowing the quantification of SEGI-8s dynamics along all three axes. It then also served as a software contribution to the iGEM community. And just when we thought it was done, it hit us. GausHaus' quantification of protein dynamics is an ideal measurement for teams during this renaissance of computational biology brought on by COVID-19. All in all we fought, we loved, and we demolished some molecular dynamics. What more could you ask for?
          to genetically modify <i>Rhodosporidium toruloides</i>, an oleaginous
+
          yeast that naturally produces beta-carotene and lipids, to be more
+
          robust and resource-efficient. By modifying the yeast to produce
+
          cellulase, it can then use common agricultural waste products as an
+
          energy source for synthesizing its oil. It can then be eaten as a
+
          vitamin A supplement. The yeast strain, while naturally safe and
+
          non-pathogenic, will also be genetically modified to include a kill
+
          switch for bio-containment, and optimized for oil production.
+
 
         </p>
 
         </p>
 
         <h4>Metabolic Flux</h4>
 
         <h4>Metabolic Flux</h4>

Revision as of 22:21, 27 October 2020



OVERVIEW

The following page describes the summarized results of our work in each of our subprojects. Please visit the corresponding links to the subproject specific pages to get more details on the background information and our methods.



ENGINEERING SUCCESS

Cellulase Integration

Go to Cellulase page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Biocontainment

Go to Biocontainment page

We developed a sustainable and affordable biosafety system where two yeast strains will be co-cultured together in a syntrophic community. These strains will each be auxotrophic for a molecule the other strain has been modified to overproduce. This ensures that the two strains are co-dependent, reducing the chances of environmental escape. The organism can only proliferate if both strains are present in sufficient quantities to support each other’s growth. Ultimately, this novel method of co-dependent auxotrophy provides an easily implementable biocontainment strategy to prevent the escape of genetically engineered organisms.

This season specifically, we developed a proof of concept for our co-culturing system using a pair of already engineered S. cerevisiae strains. We are happy to say that by the end of this season, we accomplished quite a bit:

✔ We successfully characterised a proof of concept for our biocontainment system using a pair of already engineered S. cerevisiae strains:

  • Characterised the strains in terms of auxotrophy and amino acid overproduction
  • Created a viable co-culture demonstrating the ability of the strains to survive using the amino acid released by each of the complementary strains
  • Demonstrated the inability of the yeast to survive in environmental conditions outside of the expected growth vessel conditions

✔ We designed and submitted a total of eight parts to the parts registry that allow for the engineering of Y. lipolytica to create complementary overproducing, auxotrophic strains.


Thymol Production

Go to Thymol page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



HUMAN PRACTICES

Creating a human-centred project

Go to Human Practices page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



PROPOSED IMPLEMENTATION

Bioreactor

Go to Bioreactor page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Randle's Cell Testing Device

Go to Randle Cell Testing Device page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Entrepreneurship

Go to Entrepreneurship page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.





PARTS

Characterize

Go to Parts Characterization page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



MODELLING, SOFTWARE, AND MEASUREMENT

Bellatrix

Go to Bellatrix page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Protein Modelling

Go to Modelling page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

GausHaus

Go to GausHaus page

GausHaus was not like the other software sitting by the beach enjoying sparkling cider; it put in the work. GausHaus spent the summer confusing and terrorizing our statistician with sprinkles of success amongst an ocean of setbacks. Once it clicked though, we were off to the races with GausHaus coming through whenever called upon. This resulted in it being instrumental to our protein modelling, allowing the quantification of SEGI-8s dynamics along all three axes. It then also served as a software contribution to the iGEM community. And just when we thought it was done, it hit us. GausHaus' quantification of protein dynamics is an ideal measurement for teams during this renaissance of computational biology brought on by COVID-19. All in all we fought, we loved, and we demolished some molecular dynamics. What more could you ask for?

Metabolic Flux

Go to Metabolic Flux page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Measurement

Go to Measurement page

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



NEXT YEAR

Our goals for next year

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.