Difference between revisions of "Team:Calgary/Results"

Line 80: Line 80:
 
   /* Use "linear-gradient" to add a darken background effect to the image (photographer.jpg). This will make the text easier to read */
 
   /* Use "linear-gradient" to add a darken background effect to the image (photographer.jpg). This will make the text easier to read */
 
   background-image: linear-gradient(to bottom, rgba(0,0,0,0.5) 0%,rgba(0,0,0,0.5) 100%), url("https://static.igem.org/mediawiki/2020/e/e1/T--Calgary--results.jpg");
 
   background-image: linear-gradient(to bottom, rgba(0,0,0,0.5) 0%,rgba(0,0,0,0.5) 100%), url("https://static.igem.org/mediawiki/2020/e/e1/T--Calgary--results.jpg");
   background-position: 0px -100px;
+
   background-position: 0px -200px;
 
}
 
}
  

Revision as of 07:05, 24 October 2020



OVERVIEW

The following page describes the summarized results of our work in each of our subprojects. Please visit the corresponding links to the subproject specific pages to get more details on the background information and our methods.



ENGINEERING SUCCESS

Cellulase Integration

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Biocontainment

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Omega 3 Fatty Acid Production

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Thymol Production

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



HUMAN PRACTICES

Creating a human-centred project

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



PROPOSED IMPLEMENTATION

Bioreactor

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Randle's Cell Testing Device

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Entrepreneurship

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.





PARTS

Characterize

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Validate

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



MODELLING

Bellatrix

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Protein Modelling

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

GausHaus

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Metabolic Flux

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.

Measurement

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



NEXT YEAR

Our goals for next year

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.