Team:Calgary/Contribution



BRANDING STYLE GUIDE

How do you create a brand for your project?

A branding style guide espouses the face, personality, and values of your project and defines its visual and voice identity. In other words, your branding style guide shapes how you present your project to the world, and how the world sees your project. Creating a branding style guide is an iterative process that begins with first understanding the values and personality of your project and of your target audiences. We understand that this can be a daunting task, so we used our own branding experience to develop a comprehensive branding style guide template. This branding style guide can be downloaded as a pdf below and provides a scaffold for future iGEM teams looking to finesse their brand. Enjoy!

Downloadable Branding Style Guide (pdf): INSERT



EDUCATIONAL TOOLS

Promoting synthetic biology education and more

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



PART COLLECTION

Creating meaningful parts for the iGEM community

In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



PART CHARACTERIZATION

Characterizing a Y. lipolytica promoter

Y. lipolytica is a new promising chassis that has a variety of applications in the field of biotechnology. This chassis, however, has not been well established in the iGEM community. As such important molecular elements such as strong constitutive promoters have not been well identified in the iGEM registry for use in this chassis. The development of strong promoter elements is necessary to allow for synthetic biology applications in the chassis as heterologous protein expression often requires a strong constitutive promoter. In an effort to facilitate the use of this promising chassis in the iGEM community, we have characterized the Y. lipolytica native TEF1 promoter

  • BBa_K2117000
  • using the information found in the literature. We have identified the basal expression level of the native promoter and methods for improving its expression.



    COMPLEMENTARY AUXOTROPHY SYSTEM

    Co-culture biocontainment system

    In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



    BELLATRIX

    Creating a protein library

    In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



    GAUSHAUS

    Andrew pls halp

    In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.



    Protocols

    Contributing yeast protocols

    In order to provide a sustainable, community-based solution, we plan to genetically modify Rhodosporidium toruloides, an oleaginous yeast that naturally produces beta-carotene and lipids, to be more robust and resource-efficient. By modifying the yeast to produce cellulase, it can then use common agricultural waste products as an energy source for synthesizing its oil. It can then be eaten as a vitamin A supplement. The yeast strain, while naturally safe and non-pathogenic, will also be genetically modified to include a kill switch for bio-containment, and optimized for oil production.